Version Jan 19, 2011

Introduction to Database Systems
CSE 444

Lectures 6-7: Database Design

Outline

» Design theory: 3.1-3.4
[Old edition: 3.4-3.6]

Schema Refinements = Normal Forms

» 1st Normal Form = all tables are flat

» (2nd Normal Form = obsolete)

» Boyce Codd Normal Form = main focus

» 3rd Normal Form = see book for more details

First Normal Form (1NF)

» A database schemaisin First Normal Form if all tables

are flat Student
Name GPA
Student Alice 38
Bob 3.7
Name GPA Course Carol 3.9
— Takes Course
Alice 3.8 DB Student | Course Course
— .
0OS Alice Math Math
— May need to Carol Math DB
Bob |3.7 — add keys Alice | DB 0s
Bob DB
Math
Carol 3.9 Alice 0S
0S
Carol 0S

Conceptual Schema Design

Conceptual Model: Patient Doctor

__ t___

Relational Model:
plus FD’s

(FD = Functional Dependency) /\ / \

Normalization:
Eliminates anomalies

Data Anomalies

» When a database is poorly desighed we get anomalies:
Redundancy: data is repeated
Update anomalies: need to change in several places
Delete anomalies: may lose data when we don’t want

Relational Schema Design

Recall set attributes (persons with several phones):

Name SSN PhoneNumber | City

Fred 123-45-6789 206-555-1234 | Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)

The above is in 1NF, but what is the problem with this schema?

Relational Schema Design

Recall set attributes (persons with several phones):

Name SSN PhoneNumber | City

Fred 123-45-6789 206-555-1234 Seattle

Fred 123-45-6789 206-555-6543 Seattle

Joe 987-65-4321 908-555-2121 Westfield
Anomalies:

e Redundancy =repeat data

e Update anomalies

= what if Fred moves to “Bellevue”?

e Deletion anomalies = what if Joe deletes his phone number?
(what if Joe had only one phone #)

Relation Decomposition

Break the relation into two:

Name SSN PhoneNumber | City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
/ Joe 987-65-4321 908-555-2121 Westfield
\
Name SSN City SSN PhoneNumber
Fred 123-45-6789 | Seattle 123-45-6789 206-555-1234
Joe 987-65-4321 | Westfield 123-45-6789 206-555-6543
987-65-4321 908-555-2121

Anomalies have gone:
e No more repeated data
e Easy to move Fred to “Bellevue” (how ?)

e Easy to delete all Joe’s phone numbers (how ?)

Relational Schema Design (Logical Design)

» Main idea:
Start with some relational schema
Find out its functional dependencies (discussed next!)
Use them to design a better relational schema

Functional Dependencies

» A form of constraint
Hence, part of the schema

» Finding them is part of the database design
» Use them to normalize the relations

Functional Dependencies (FDs)

Definition:
If two tuples agree on the attributes

AL A, ..., A
then they must also agree on the attributes

B, B, .., B,

Formally:

A,A,.,A >B,B,, ..B_

When Does an FD Hold

Definition: A, ..., A
YVt t' ER,
(tA=t A A..AtA =t A, = tB =t'B,a..AtB =t.B,)

- B, ..., B, holds in R if:

m

S— N——

if t, t’ agree here thent, t’ agree here

Example

An FD holds, or does not hold on an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 0876 Salesrep
E9999 Mary 1234 Lawyer

EmpID = Name, Phone, Position
Position = Phone
but not: Phone - Position

Example

Salesrep

Salesrep

Position = Phone

Example

1234 —

But not: Phone - Position

Example

FD’s are constraints:
e On some instances they hold
e On others they don’t

name = color
category = department
color, category = price

name category color department price
Gizmo Gadget Green Toys 49
Tweaker Gadget Green Toys 99

Does this instance satisfy all the FDs ?

Example

FD’s are constraints: name = color
e On some instances they hold category = department
* On others they don’t color, category = price
name category color department price
Gizmo Gadget Green Toys 49
Tweaker Gadget Green Toys 99
Gizmo Stationary Blue Supplies 59

What about this one?

An Interesting Observation

If all these FDs are true:

Then this FD also holds:

Why ?7?

name = color
category = department

color, category = price

name, category = price

Goal: Find ALL Functional Dependencies
» Anomalies occur when certain “bad” FDs hold

» We know some of the FDs

» Need to find all FDs

» Then look for the “bad” ones

Armstrong’s Rules (1/3)

A, A, .,A >B,B, .., B_

Splitting rule
and
Combing rule

Is equivalent to

Armstrong’s Rules (2/3)

ALA,, ..., A 2A

wherei=1, 2, ..., n

Trivial Rule

Why ?

Armstrong’s Rules (3/3)

Transitive Rule

If A, A, ..,A 2>B,B,..B._
and By, By, -, B,y 2 Cy, Cy, ..., C,
then Al, Az, ey An - Clr Czr - Cp

Why ?

Armstrong’s Rules (3/3)

lllustration for Transitivity

Example (continued)

Start from the following FDs: 1. name —> color
2. category = department

3. color, category = price

Infer the following FDs:

Inferred FD

Which Rule
did we apply ?

4. name, category = name

5. name, category = color

6. name, category —> category

7. name, category > color, category

8. name, category - price

Example (continued)

1. name —> color
2. category = department
3. color, category = price

Answers:
Inferred FD ZYQIVCVZ z:ISIy 5
4. name, category = name Trivial
5. hame, category = color Transitivityon 4, 1
6. name, category —> category Trivial
7. name, category —> color, category Split/combine on 5, 6
8. name, category —> price Transitivity on 3, 7

THISISTOO HARD ! Let’s see an easier way.

Closure of a set of Attributes

Given a set of attributes A, ..., A

n

The closure, {A,, ..., A }* =the set of attributes B
s.t. A, ..., A, 2B

Example: name —2 color
category = department

color, category = price
Closures:

name* = {name, color}
{name, category}* = {name, category, color, department, price}
color* = {color}

Closure Algorithm

X={A,, ..., A }. Example:

Repeat until X doesn’t change do: name —> color
if B, ..B =>C isaFDand category = department

B,, ..., B, areallin X color, category = price
, oy B,

then add C to X.

{name, category}* =
{ name, category, color, department, price }

Hence: name, category = color, department, price

Example

In class:

R(A,B,C,D,E,F)

Compute {A,B}*

Compute {A, F}*

X=1{A, B,

X=1{A,F,

> W > >

-

-

-n

\ 220\ 2\
w o mOoO

Example

In class:

R(A,B,C,D,E,F)

Compute {A,B}*

Compute {A, F}*

-

> o > >
O ©

X={AB,CD,E}

X=1{A,F,

\ 220\ 2\
w o mOoO

Example

In class:

R(A,B,C,D,E,F)

Compute {A,B}*

Compute {A, F}*

> o > >

O @
N2\ 22\ 2\~
o O MmO

X={AB,CD,E}

X={AF,B,CD,E}

Why Do We Need Closure

» With closure we can find all FD’s easily

» Tocheckif X — A

Compute X*
Check if A € X*

Using Closure to Infer ALL FDs

Example:

’

A,B 2> C
A,D 2> B
B 2> D

Step 1: Compute X*, for every X:
A*=A, B*=BD, C'=C, D*=D
AB* =ABCD, AC*=AC, AD*=ABCD,
BC*=BCD, BD*=BD, CD*=CD
ABC* = ABD* = ACD*= ABCD (no need to compute— why ?)
BCD*=BCD, ABCD*=ABCD

Step 2: Enumerate all FD's X 2 Y, s.t. Y C X* and XNY = J:
B—-> D, AB —> CD, AD—>BC, BC>D, ABC—-> D, ABD > C, ACD - B

Another Example

Enrollment(student, major, course, room, time)

student = major
major, course > room
course - time

What else can we infer ? [in class]

Solution is on our group wiki:
https://cubist.cs.washington.edu/wiki/index.php/CSE444

Keys

» A superkey is a set of attributes A,, ..., A_ s.t. for any
other attribute B, we have A, ..., A. > B

» A key is a minimal superkey

l.e. set of attributes which is a superkey and for which no
subset is a superkey

Computing (Super)Keys
» Compute X* for all sets X
» If X* = all attributes, then X is a superkey

» List only the minimal X’s to get the keys

Example

Product(name, price, category, color)

name, category = price
category = color

What is the key ?

Example

Product(name, price, category, color)

name, category = price
category = color

What is the key ?

(name, category)* ={ name, category, price, color }

Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

student - address
room, time = course
student, course 2 room, time

Find keys at home!

Solution soon on our group wiki:
https://cubist.cs.washington.edu/wiki/index.php/CSE444

Eliminating Anomalies
Main idea:
» X — Ais OKif X is a (super)key

» X — Ais not OK otherwise

Example

SSN = Name, City

Name SSN PhoneNumber |City

Fred 123-45-6789 206-555-1234 | Seattle
Fred 123-45-6789 206-555-6543 | Seattle
Joe 087-65-4321 908-555-2121 | Westfield
Joe 087-65-4321 908-555-1234 | Westfield
What is the key? {SSN, PhoneNumber}

Hence SSN - Name,City is a “bad” dependency

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s, s.t. there are two or more keys

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s, s.t. there are two or more keys

AB =2 C or A = BC
BC 2> A B> AC

what are the keys here ?
Can you design FDs such that there are three keys ?

Boyce-Codd Normal Form (BCNF)

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If A, ..., A, = Bis anon-trivial dependency in R,

then {A,, ..., A} is a superkey for R

In other words: there are no “bad” FDs

Equivalently:
for all X, either (X*=X) or (X*=all attributes)

BCNF Decomposition Algorithm

repeat
choose A, ..., A, = B, ..., B that violates BCNF

split Rinto Ry(A,, ..., A, By, ..., B,) and R,(A,, ..., A, [others])
continue with both R, and R,
until no more violations

Is there a
2-attribute
relation that is
not in BCNF ?

In practice, we have
R, R, a better algorithm (coming up)

Example (revisited)

SSN = Name, City

Name SSN PhoneNumber |City

Fred 123-45-6789 206-555-1234 | Seattle
Fred 123-45-6789 206-555-6543 | Seattle
Joe 087-65-4321 908-555-2121 | Westfield
Joe 087-65-4321 908-555-1234 | Westfield
What is the key? {SSN, PhoneNumber}

Hence SSN - Name,City is a “bad” dependency

Example (revisited)

SSN = Name, City

Name SSN City
Fred 123-45-6789 | Seattle
Joe 987-65-4321 | Westfield
SSN PhoneNumber

Let’s check anomalies:
123-45-6789 | 206-555-1234 e Redundancy ?
123-45-6789 | 206-555-6543 e Update ?
987-65-4321 |908-555-2121 * Delete ?
987-65-4321 |908-555-1234

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

FD1: SSN = name, age
FD2: age —> hairColor

Decompose into BCNF (in class):

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

FD1: SSN = name, age
FD2: age —> hairColor

Decompose into BCNF (in class):
What is the key? {SSN, phoneNumber}

But how to decompose?

Person(SSN, name, age)

Phone(SSN, hairColor, phoneNumber)
or

Person(SSN, name, age, hairColor)

Phone(SSN, phoneNumber) SSN = name, age, hairColor
or ...

BCNF Decomposition Algorithm

BCNF_Decompose(R)
find X s.t.: X #X* # [all attributes]
if (not found) then “R is in BCNF”
letY =X*-X
let Z =[all attributes] - X*

decompose R into R;(X U Y) and R,(X U 2)
continue to decompose recursively R, and R,

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

FD1: SSN = name, age

FD2: age > hairColor Find X s.t.: X #X* # [all attributes]

lteration 1: Person

SSN* = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

lteration 2: P

age* = age, hairColor

Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

What are
the keys ?

Example

R(A,B,C,D)
A>B R(A,B,C,D)
B C A* = ABC # ABCD

Rl(A/B;C)
B*=BC %= ABC

What are
the keys ?

What happens if in R we first pick B* ? Or AB*?

Decompositions in General

R(A,, ..., A, By, ..., B, Cy, ..., C,)

PN

R(A, ..., A B, .., B) Ry(A,, ..., A, Cyy -ovy Cp)

B
C

R, = projectionof Ron A, ..
R, = projectionof Ron A, ..

LA, B, ...,
LA, Cy ...,

m
P

Theory of Decomposition

» Sometimes it is correct:

Name Price Category Name = Price

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

- \

Name Price Name Category
Gizmo 19.99 Gizmo Gadget
OneClick 24.99 OneClick Camera
Gizmo Camera

Lossless decomposition

Incorrect Decomposition

» Sometimes it is not:

Name Price Category Name = Price

Gizmo 19.99 Gadget

OneClick 24.99 Camera ,
_ What's
Gizmo 19.99 Camera .

/ \ incorrect ?7?
Name Category Price Category
Gizmo Gadget 19.99 Gadget
OneClick Camera 24.99 Camera
Gizmo Camera 19.99 Camera

Lossy decomposition

Decompositions in General

R(A,, ..., A, By, ..., B, Cy, ..., C,)

PN

R(A, ..., A B, .., B) Ry(A,, ..., A, Cyy -ovy Cp)

If A,..,A, 2B, .. B
Then the decomposition is lossless

Note: don’t need A,, ..., A, 2 C,, ..., C,

BCNF decomposition is always lossless. WHY ?

General Decomposition Goals

—_—

1. Elimination of anomalies BCNE

2. Recoverability of information
Can we get the original relation back?

3NF
3. Preservation of dependencies

Want to enforce FDs without performing joins

—_—

Sometimes cannot decompose into BCNF without
losing ability to check some FDs in single relation

BCNF and Dependencies

Unit

Company

Product Unit 2 Company

Company, Product = Unit

So, there is a BCNF violation, and we decompose.

Unit

Company

Unit

Product

Unit 2 Company

No FDs

In BCNF we lose the FD Company, Product = Unit

3NF Motivation

~

A relation Ris in 3rd normal form if :

Whenever there is a nontrivial dep. A, A, ..., A, — B for R,
then {A,, A,, ..., A }is a super-key for R,

Kor B is part of a key.

/

Tradeoffs:
BCNF: no anomalies, but may lose some FDs
3NF: keeps all FDs, but may have some anomalies

Motivation of 4NF and higher

Assume for each course, we can independently choose a

lecturer and a book. What is the problem?

Not part of exam!

Classes

Course Lecturer Book

csedds Alexandra | Complete book
csedds Wolfgang | Complete book
csed44 Alexandra | Cow book
csed44 Wolfgang | Cow book

Multi-valued dependency (MVD) Course —— Lecturer:
In every legal instance, each Course value is associated
with a set of Lecturer values and this set is independent
of the values in the other attributes (here Book).

