Introduction to Database Systems
CSE 444

Lecture 4: Views and Constraints

Product(name, category)

Review frOm Frlday Purchase(prodName, month, store)

» Compute, for each product, the total number of sales in
‘September’

SELECT Product.name, count(store)
FROM Product LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

Product Purchase

Name Category ProdName | Month | Store
Gizmo Gadget Gizmo Nov Wiz
Camera | Photo Camera Sept | NULL
OneClick | Photo Camera Sept | Wiz

Views vs Tables
» Views are relations except that they may not be physically
stored.

» Why do we need views?

» Example:

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT nhame, project
FROM Employee
WHERE department = ‘Development’

Example

Purchase(customer, product, store)
Product(pname, price)

“virtual table”

CREATE VIEW | CustomerPrice |AS
SELECT x.customer, y.price

FROM Purchase x, Product y
WHERE x.product =y.pname

Example

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer
and u.price > 100

Types of Views

» Virtual views:
Used in databases
Computed only on-demand — slow at runtime
Always up to date

» Materialized views
Used in data warehouses
Pre-computed offline — fast at runtime
May have stale data
Indexes are materialized views (read book)

Queries Over Views: Query Modification

Purchase(customer, product, store)
Product(pname, price)

View: CREATEVIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y

WHERE x.product = y.pname

Query: SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer
and u.price > 100

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

Modified query:
SELECT u.customer, v.store
FROM (SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v
WHERE u.customer = v.customer
and u.price > 100

Queries Over Views: Query Modification

Modified and unnested query:

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer

and y.price > 100

and x.product = y.pname

Applications of Virtual Views

» Physical data independence. E.g.
Vertical data partitioning
Horizontal data partitioning

» Security
Handle different access rights
The view reveals only what the users are allowed to know

10

Vertical Partitioning

Resumes

SSN Name |Address |Resume |Picture
234234 | Mary Huston Clob1... Blobl...
345345 |Sue Seattle Clob2... Blob2...
345343 |Joan Seattle Clob3... Blob3...
234234 | Ann Portland |Clob4... Blob4...
T1 n T3
SSN Name | Address SSN Resume SSN Picture
234234 | Mary | Huston 234234 | Clob1... 234234 | Blob1...
345345 |Sue | Seattle 345345 | Clob2... 345345 | Blob2...

11

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, Tl.name, T1l.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

Why use vertical partitioning?

SELECT address Which of the tables T1, T2, T3 will
FROM Resumes be queried by the system ?
WHERE name = ‘Sue’

12

Vertical Partitioning

When to do this:

» When some fields are large, and rarely accessed
E.g. Picture
» In distributed databases

Customer personal info at one site, customer profile at
another

» In data integration
T1 comes from one source
T2 comes from a different source

13

Horizontal Partitioning

CustomersinHuston

Customers

SSN Name | City Country
234234 Mary Huston USA
345345 | Sue Seattle USA
345343 | Joan Seattle USA
234234 | Ann Portland | USA

-- Frank | Calgary Canada
-- Jean Montreal | Canada

SSN Name | City Country
234234 | Mary <¢ston USA
CustomersinSeattle

SSN Name | City Country
345345 | Sue VGeattle | UsA
345343 | Joan ‘*\Eatty USA
CustomersinCanada

SSN Name | City Country
-- Frank | Calgary m
-- Jean Montreal wnaw

14

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersinHuston
UNION ALL
CustomersinSeattle
UNION ALL

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

15

Horizontal Partitioning

Better:

CREATE VIEW Customers AS
(SELECT * FROM CustomersinHuston
WHERE city = ‘Huston’)
UNION ALL
(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)
UNION ALL

16

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

@

SELECT name
FROM CustomersinSeattle

17

Horizontal Partitioning

» Optimizations:
E.g. archived applications and active applications

» Distributed databases

» Data integration

18

Views and Security

Fred is not
Customers: a'l‘;‘;"fsi:o
Name Address Balance
Mary Huston 450.99 4
Sue Seattle -240
Joan Seattle 333.25
Ann Portland |-520

CREATE VIEW PublicCustomers

SELECT Name, Address
FROM Customers

Fred is allowed to see this

19

Views and Security

Customers:

Name Address Balance
Mary Huston 450.99 —
Sue Seattle -240

Joan Seattle 333.25

Ann Portland |-520

CREATE VIEW BadCreditCustomers
SELECT *

FROM Customers
WHERE Balance<O

John is
not allowed
to see >0
balances

20

Views and Updates

» Food for thought:
What happens when we insert a tuple to a view?
Update a tuple from a view?
Can we always/ever do this?

21

Constraints in SQL

Constraints in SQL:

» Keys, foreign keys

» Attribute-level constraints

» Tuple-level constraints

» Global constraints: assertions

The more complex the constraint, the harder it is to check and to
enforce

22

Keys

Product(name, category)

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

OR:

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)
PRIMARY KEY (name))

23

Keys with Multiple Attributes

Product(name, category, price)

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),

price INT,
PRIMARY KEY (name, category))

Name Category Price
Gizmo Gadget 10
Camera Photo 20
Gizmo Photo 30
2o et

Other Keys

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

25

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)
REFERENCES Product{rame},
date DATETIME) T

may write just Product

prodName is a foreign key to Product(name)
name must be a key in Product

Product /

Purchase
Name Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick Photo Camera Wiz

26

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product{rame~<categery)

27

What happens during updates ?

Types of updates:
» In Purchase: insert/update
» In Product: delete/update

Product /

Purchase
Name Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick Photo Camera Wiz

28

What happens during updates ?

» SQL has three policies for maintaining referential
integrity:
Reject violating modifications (default)
Cascade: after a delete/update do a delete/update
Set-null set foreign-key field to NULL

CREATE TABLE Purchase (
prodName CHAR(30)
REFERENCES Product(name),
ON DELETE SET NULL
ON UPDATE CASCADE)

29

Constraints on Attributes and Tuples

» Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

» Constraints on tuples
CHECK condition

30

CHECK condition

How is this different from a foreign key constraint?

CREATE TABLE Purchase (
prodName CHAR(30)
CHECK (prodName IN
SELECT Product.name
FROM Product),
date DATETIME NOT NULL)

31

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(
SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

32

