Introduction to Database Systems
CSE 444

Lecture 3: SQL (part 2)

Outline

» Aggregations (6.4.3 — 6.4.6)

» Examples, examples, examples...

» Nulls (6.1.6 - 6.1.7) [Old edition: 6.1.5-6.1.6]
» Outer joins (6.3.8)

Aggregation

SELECT avg(price) SELECT count(*)
FROM Product FROM Product
WHERE maker="Toyota’ WHERE vyear > 1995

SQL supports several aggregation operations:

sum, count, min, max, avg

Except count, all aggregations apply to a single attribute

Aggregation: Count Distinct

COUNT applies to duplicates, unless otherwise stated:

SELECT count (category) same as Count(*)
FROM Product
WHERE vyear > 1995

We probably want:

SELECT count (DISTINCT category)
FROM Product
WHERE vyear > 1995

Simple Aggregation 1 /2

Purchase (product, price, quantity)

SELECT sum (price * quantity)

FROM Purchase What do these

gueries mean?
SELECT sum (price * quantity)
FROM Purchase
WHERE product = 'Bagel’

Simple Aggregation 2 /2

Purchase
Product |Price |Quantity
Bagel 3 20 3*20=60
Bagel 2 20 2*20=40
Banana |1 50 sum: 100
Banana |2 10
Banana |4 10
SQL creates attribute name
SELECT sum (price * quantity) }C‘) column name)
FROM Purchase j> 100

WHERE product = 'Bagel’

Grouping and Aggregation

Product |Price |Quantity
Bagel 3 20
Bagel 2 20
—Banana—1 50
Banana |2 10
Banana (4 10

—

Product

TotalSales

Bagel

40

Banana

20

Find total quantities for all sales over $1, by product.

From — Where — Group By — Select

Product |Price |Quantity Product | TotalSales
Bagel 3 20 j> Bagel 40
Bagel 2 20 Banana |20

—Banana 1 50

Banana |2 10 Select contains
Banana |4 10 * grouped attributes

/ * and aggregates
4 SELECT product, sum(quantity) as TotalSales
FROM Purchase
2 WHERE price > 1
3 ' GROUP BY product

Group By v.s. Nested Queries

SELECT DISTINCT x.product,
(SELECT sum(y.quantity)
FROM Purchase y
WHERE x.product = y.product
and ("price > 1))as TotalSales
FROM Purchase x
WHERE (price > 1

Why twice?

SELECT product, sum(quantity) as TotalSales
FROM Purchase

WHERE price > 1

GROUP BY product

Another Example

SELECT product,
sum(quantity) as SumQuantity,
max(price) as MaxPrice
FROM Purchase
GROUP BY product

j> Product | TotalSales | MaxPrice
Bagel |40 3
Banana |70 4

Next, focus only on products with at least 50 sales

HAVING Clause

Q: Similar to before, but only products with at least 30 sales.

SELECT product,
sum(quantity) as SumQuantity,
max(price) as MaxPrice
FROM Purchase
GROUP BY product
HAVING sum(quantity) > 50

j> Product | TotalSales | MaxPrice
Banana |70 4

General form of Grouping and Aggregation

5 SELECT S < S: may contain attributes a,,...,a, and/or
any aggregates but no other attributes
FROM Ry,-.R, Y 29919

WHERE C1 <« C1: is any condition on the attributes in
R,,....R,
3 GROUPBY a,,...,a, 1
4 HAVING C2 <« C2: is any condition on aggregates and

on attributes a,,...,a,

Evaluation

1. Evaluate From — Where, apply condition C1

2. Group by the attributes a,,...,a,

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT
2. Unnesting Aggregates

3. Finding witnesses

INTERSECT and EXCEPT*

(SELECT R.A, R.B SELECT R.A, R.B
FROM R) FROM R Can be
WHERE
INTERSECT > EXISTS(SELECT * unnested.
FROM S How?
(SELECT S.A, S.B WHERE R.A=S.A
FROM S) and R.B=S.B)
(SELECT R.A, R.B SELECT R.A, R.B
FROM R) FROM R
WHERE
EXCEPT > NOT EXISTS(SELECT *
FROM S
(SELECT S.A, S.B WHERE R.A=S.A
FROM S) and R.B=S.B)

*Not in all DBMSs

Unnesting Aggregates

Product (pname, price, company)
Company (cname, city)

Find the number of companies in each city

SELECT DISTINCT city, (SELECT count(*)
FROM CompanyY

WHERE X.city =Y.city)
FROM Company X

SELECT city, count(*) \

FROM C.ompany <—— Equivalent queries
GROUP BY city (as long as no NULLs)

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY)

Unnesting Aggregates

Product (pname, price, company)

Company(cname, city) What if there are no

products for a city? ©

Find the number of products made in each city

SELECT DISTINCT X.city, (SELECT count(*)
FROM Product Y, Company Z
WHERE Z.cname =Y.company
and Z.city = X.city)
FROM Company X

SELECT X.city, count(*) \

FROM Company X, Product Y The_’ are ncl"lf
WHERE X.chame =Y.company < equivalent!!
GROUP BY X.city Why??

More on Unnesting

» Find all authors who wrote at least 10 documents:

SELECT DISTINCT Author.name
FROM Author

WHERE (SELECT count(Wrote.url) Works, but this
FROM Wrote is bad style
WHERE Author.login=Wrote.login)
> 10

» Second attempt (no nesting):

SELECT Author.name
FROM Author, Wrote

WHERE Author.login=Wrote.login Much better!
GROUP BY Author.name
HAVING count(Wrote.url) > 10

Finding Witnesses

Store(sid, sname)
Product(pid, pname, price, sid)

Q: For each store, find its most expensive products

Finding the maximum price is easy...

SELECT Store.sid, max(Product.price)
FROM Store, Product

WHERE Store.sid = Product.sid
GROUP BY Store.sid

But we want the “witnesses”, i.e. the products with max price

Finding Witnesses

Plan:
» Compute max price in a subquery
» Compare it with each product price

SELECT Store.sname, Product.pname
FROM Store, Product,
(SELECT Store.sid as sid, max(Product.price) as p
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid) X
WHERE Store.sid = Product.sid
and Store.sid = X.sid
and Product.price = X.p

Finding Witnesses

There is a more concise solution here:

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid
and Xx.price >=
ALL (SELECT y.price
FROM Product y
WHERE Store.sid = y.sid)

NULLS in SQL

» Whenever we don’t have a value, we can put a NULL

» Can mean many things:
Value does not exists
Value exists but is unknown
Value not applicable
Etc.

» The schema specifies for each attribute if it can be NULL (nullable
attribute) or not

» How does SQL cope with tables that have NULLs ?

Null Values

» If x= NULL then
Arithmetic operations produce NULL. E.g: 4*(3-x)/7
Boolean conditions are also NULL. E.g: x="Joe’

» In SQL there are three boolean values:
FALSE, TRUE, UNKNOWN

» Reasoning: _
FALSE =0 X AND y = min(x,y)
TRUE=1 — X OR vy =max(x,y)
UNKNOWN = 0.5 NOT x = (1 —x)

—

Null Values: example

SELECT *
FROM Person
WHERE (age < 25)
and (height > 6 or weight > 190)

Age Height Weight Rule in SQL:

20 NULL 200 include only tuples that
NULE 65 170 yield TRUE

SELECT *

FROM Person < Unexpected behavior

WHERE age <25 orage >=25

*
SELECT % Test NULL

FROM Person explicitly
WHERE age <25 orage >=25o0orage IS NULL

Outerjoins

Product(name, category)
Purchase(prodName, store)

An “inner join”:
SELECT Product.name, Purchase.store
FROM Product, Purchase

WHERE Product.name = Purchase.prodName

Same as:

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

But Products that never sold will be lost !

Outerjoins

Product(name, category)
Purchase(prodName, store)

If we want the never-sold products, we need an “outerjoin”:

SELECT Product.name, Purchase.store

FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName
Product Purchase Result
Name Category ProdName | Store Name Store
Gizmo Gadget Gizmo Wiz Gizmo Wiz
Camera |Photo Camera Ritz Camera Ritz
OneClick | Photo Camera Wiz Camera Wiz

NULL

Inner join does not produce this tuple

/| OneClick

Example

Product(name, category)
Purchase(prodName, month, store)

» Compute, for each product, the total number of sales in
‘September’

SELECT Product.name, count(*)

FROM Product, Purchase

WHERE Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

What's wrong?

Example

Product(name, category)
Purchase(prodName, month, store)

» Compute, for each product, the total number of sales in

‘September’ We need to use the attribute to get
the correct O count. (§6.4.6)
SELECT Product.name, count(stofé)
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’
GROUP BY Product.name

Now we also get the products with O sales

Outer Joins: summary

» Left outer join:
Include the left tuple even if there’s no match

» Right outer join:
Include the right tuple even if there’s no match

» Full outer join:
Include both left and right tuples even if there’s no match

