
Name:

CSE 444, Winter 2011, Final Examination

17 March 2011

Rules:

• Open books and open notes.

• No laptops or other mobile devices.

• Please write clearly and explain your reasoning

• You have 1 hour 50 minutes; budget time carefully

• An extra page is provided in case you run out of space, but make sure to put a forward reference.

Question Max Grade
1 27
2 20
3 34
4 14
5 5

Total 100

Extra credit 5

1

Initials:

1. (27 points) SQL and Relational Algebra

Consider the following schema:

Vehicle (VIN, model, year)

Driver (license, name, age)

Insured (license, VIN, premium)

The key fields are underlined: VIN is the key for Vehicle, license is the key for Driver, and VIN and
license together form the key for Insured. Also, Insured.license is a foreign key that references
Driver.license, and Insured.VIN is a foreign key that references Vehicle.VIN.

(a) (22 points) Write the following queries in Relational Algebra and SQL. For the RA part, you
can give either the relational algebra expression, or the tree representation.

i. (6 points) Find the VINs of vehicles that are insured for a driver between 20 and 30 years
of age.

Relational Algebra:

πV IN ((πlicenseσage>20∧age<30Driver) ./ Insured)

or

πV IN (σage>20∧age<30(Driver ./ Insured))

SQL:

SELECT I.VIN

FROM Insured I, Driver D

WHERE D.age > 20 AND D.age < 30 AND D.license = I.license

2

Initials:

ii. (8 points) Find the VINs of vehicles that are insured for some driver under 25 years of age
and another driver who is over 50 years of age.

Relational Algebra:

πV IN ((πlicenseσage<25Driver) ./ Insured)
⋂
πV IN ((πlicenseσage>50Driver) ./ Insured)

or
πV IN (σage<25(Driver ./ Insured))

⋂
πV IN (σage>50(Driver ./ Insured))

SQL:

SELECT I1.VIN

FROM Insured I1, Driver D1, Insured I2, Driver D2

WHERE D1.age < 25 AND D1.license = I1.license

AND D2.age > 50 AND D2.license = I2.license

AND I1.VIN = I2.VIN

or

SELECT I.VIN

FROM Insured I, Driver D

WHERE D.age < 25 AND D.license = I.license

AND EXISTS (SELECT D2.license

FROM Driver D2, Insured I2

WHERE D.age > 50 AND I2.VIN = I.VIN

AND D2.license = I2.license)

3

Initials:

iii. (8 points) Some vehicles are operated by more than one driver, and a different premium
may be charged for each driver for the same vehicle. Find pairs of license numbers such that
the driver with the first license number gets charged a higher premium for the same vehicle
compared to the driver with the second license number.

Relational Algebra:

ρ(I1, Insured)

ρ(I2, Insured)

πI1.license,I2.license(σI1.V IN=I2.V IN∧I1.license6=I2.license∧I1.premium>I2.premium(I1 × I2))

SQL:

SELECT I1.license, I2.license

FROM Insured I1, Insured I2

WHERE I1.VIN = I2.VIN

AND I1.license <> I2.license

AND I1.premium > I2.premium

Alternatively, “I1.license <> I2.license” can be left away because of the key (license,VIN)

and comparison on premium:

SELECT I1.license, I2.license

FROM Insured I1, Insured I2

WHERE I1.VIN = I2.VIN

AND I1.premium > I2.premium

4

Initials:

(b) (5 points) For each one of the Relational Algebra (RA) expressions that follow, state what
they compute. Simply select one of the statements below that correctly describes the output
produced by each expression. Different RA expressions may map to the same statement,
but one RA expression cannot correspond to multiple statements. For your convenience, the tree
representations of the RA expressions are given on the next page.

Statements:

i. The models of vehicles insured by a driver under 25 years old for a premium of less than $200,
and another driver who is over 50 years old, with a premium of less than $150.

ii. The models of vehicles insured by drivers under 25 years old for a premium of less than $200.

iii. The models of vehicles insured by a driver under 25 years old for a premium of less than $200,
or a driver who is over 50 years old, with a premium of less than $150.

iv. The RA expression returns no tuples.

v. None of the statements i-iv correctly describes the output of the RA expression.

RA1: πmodel(πV IN ((σage<25Driver) ./ (σpremium<200Insured)) ./ V ehicle)

is described by statement: ii

RA2: πmodel(πV IN ((σage<25Driver) ./ (σpremium<200Insured) ./ V ehicle))

is described by statement: iv

RA3: πmodel(σage<25∧premium<200((πV IN (Driver ./ Insured)) ./ V ehicle))

is described by statement: iv

RA4: (πmodel((σage<25Driver) ./(σpremium<200Insured) ./ V ehicle))
⋃

(πmodel((σage>50Driver) ./ (σpremium<150Insured) ./ V ehicle))

is described by statement: iii

RA5: πmodel((πV IN,model((σage<25Driver) ./ (σpremium<200Insured) ./ V ehicle))
⋃

(πV IN,model((σage>50Driver) ./ (σpremium<150Insured) ./ V ehicle))))

is described by statement: iii

5

Initials:

σage<25

Driver

V ehicle

Insured

��

πV IN

σpremium<200

��

πmodel

(a) RA1

σage<25

Driver

V ehicle

Insured

��

πV IN

σpremium<200

��

πmodel

(b) RA2

Driver

V ehicle

Insured

��

πV IN

��

πmodel

σage<25∧premium<200

(c) RA3

σage<25

Driver

V ehicle

Insured

��

σpremium<200

��

πmodel

Driver

V ehicle

Insured

��

��

πmodel

σpremium<150σage>50

�

(d) RA4

σage<25

Driver

V ehicle

Insured

��

σpremium<200

��

Driver

V ehicle

Insured

��

��

πmodel

σpremium<150σage>50

�

πV IN,modelπV IN,model

(e) RA5

6

Initials:

2. (20 points) Distributed Transactions

Assume a distributed transaction T that was submitted at site 0 (coordinator), and spawned subtrans-
actions at sites 1, 2, and 3 (subordinates). We describe the sequences of messages that can take place
during the 2 Phase Commit Protocol as follows: Let (i, j, M) denote that site i sends message M to
site j. The value of M can be one of the following:

P (prepare)

C (commit)

A (abort)

Y (yes vote, ready to commit)

N (no vote, do not commit).

For example, the message (0, 1, P) denotes a prepare message send from the coordinator to the first
subordinate.

We ignore ack messages.

(a) (2 points) Describe the sequence of messages send for a successful commit during the 2 phases
of the 2PC protocol. At what point exactly is the transaction considered committed?

(0,1,P), (0,2,P), (0,3,P), (1,0,Y), (2,0,Y), (3,0,Y), (0,1,C), (0,2,C), (0,3,C)

The Xact is considered committed when a commit record is force-written by the coordinator, just
before sending commit messages to the subordinates.

(b) (2 points) Describe the sequence of 2PC messages in case site 3 does not want to commit the
transaction. Underline any messages that can be omitted as an optimization.

(0,1,P), (0,2,P), (0,3,P), (1,0,Y), (2,0,Y), (3,0,N), (0,1,A), (0,2,A), (0,3,A)

7

Initials:

(c) (4 points) Suppose that the coordinator has sent all the prepare messages but has not yet
received a vote from site 1. Would it be ok for the coordinator to abort the transaction at this
point, and send abort messages to the subordinates? Why, or why not?

Yes. No site committed the transaction, and no commit messages have been sent.

(d) (4 points) Suppose that the coordinator has sent all the prepare messages, received a No vote
from site 1, but has not yet received the votes of sites 2 and 3. Should the coordinator wait for
the two missing votes, or should it proceed to abort the transaction and why?

The coordinator should proceed to abort the transaction, as any No vote guarantees abort.

(e) (4 points) Suppose that site 1 has received a prepare message and voted Yes, but has not
received any commit or abort messages. Site 1 contacts site 2 and discovers that site 2 has
received a commit message. Is it ok for site 1 to commit the transaction? Why, or why not?

Yes. If any site has received a commit message, the Xact is committed at the coordinator site.

(f) (4 points) Suppose that site 1 has received a prepare message and voted Yes, but has not received
any commit or abort messages. Site 1 contacts all other subordinates and discovers that they have
all voted Yes to the coordinators Prepare message. Is it ok for site 1 to commit the transaction?
Why, or why not?

No. The coordinator may have crashed, or timed-out waiting for a yes vote and can choose to
unilaterally abort the Xact.

8

Initials:

3. (34 points) Query Optimization

Consider the following schema:

Guitars (gid, brand, price)

Players (pid, name, age)

LastPlayed (gid, pid, date)

Here, LastPlayed.gid is a foreign key that references Guitars.gid, and LastPlayed.pid is a foreign
key that references Players.pid. Consider the following query:

SELECT P.name

FROM Guitars G, Played P, LastPlayed L

WHERE G.gid = L.gid AND P.pid = L.pid

AND P.age <= 25 AND G.brand = ’Gibson’

AND G.price >= 3000;

Further assume that the data is evenly distributed, and that the following statistics hold:

Guitars.gid has 1,000 distinct values
Guitars.brand has 15 distinct values
Guitars.price ranges from 1,000 to 4,999
Players.pid has 15,000 distinct values
Players.age ranges from 11 to 85

(a) (6 points) Compute the selectivity for each individual term in the where clause, then provide a
final selectivity estimate for what fraction of the total tuples will appear in the output. Calculate
each of the 6 values below:

G.gid = L.gid : 1/1, 000

P.pid = L.pid : 1/15, 000

P.age <= 25 : 15/75 = 1/5

G.brand = ’Gibson’ : 1/15

G.price >= 3000 : 2, 000/4, 000 = 1/2

TOTAL : 1/(1, 000 ∗ 15, 000 ∗ 5 ∗ 15 ∗ 2) = 1/(2, 25 ∗ 109)

9

Initials:

(b) (2 points) In the following picture you see three possible linear plans (they are all left-deep).
Which of the shown query plans would not be considered by any reasonable query optimizer and
why? Circle the plan(s) that would not be considered and explain your reasoning below.

G	
 P	

L	

G	
 L	

P	

L	
 P	

G	

(1)	
 (2)	
 (3)	

The first plan would not be considered. Since G and P share no join predicate, the first plan
would require a cross product.

10

Initials:

(c) (16 points) Next assume there is an unclustered B+ tree index on Guitars.gid which is kept
in main memory, and consider the following statistics for each of the 3 relations:

Guitars: 40 bytes/tuple, 100 tuples/page, size: 10 pages
Players: 80 bytes/tuple, 50 tuples/page, size: 300 pages
LastPlayed: 25 bytes/tuple, 150 tuples/page, size: 90,000 pages

Consider the query plan below. Calculate the number of I/Os, step-by-step. Make your calcu-
lations explicit so you can get partial credit. Remember that for a page-oriented nested loop,
only one single page of the build relation is kept in main memory while iterating over the probe
relation. Assume the main memory has clearly space for more than 2 pages.

Players

LastPlayed

pid = pid

σP.age < 25

πP.name

(file scan)

(on the fly) (file scan)

(page-oriented
nested loop join)

Guitars

gid = gid

(B+ tree on gid)

σG.brand='Gibson' AND G.price>3,000 (on the fly)

(on the fly)

(index-nested
loop join)

• Scan of Players creates 300 I/Os.
• Selection Page<25 leaves tuples that fit into 300 ∗ 1/5 = 60 pages. No additional cost.
• The page-oriented nested loop join iterates 60 times over the probe relation (one page at a

time). Cost: 60 ∗ 90, 000 = 5.4 ∗ 106 I/Os.
• The number of tuples after the nested loop join on the foreign key is the number of tuples in
LastPlayed (90, 000 ∗ 150) times the selection 1/5 on Players, hence 90, 000 ∗ 30 = 2.7 ∗ 106.

• For each such tuple, the index-nested loop join retrieves exactly one page due to the foreign
key join. Cost: 2.7 ∗ 106 I/Os.

• Total cost: 300 + (5.4 + 2.7) ∗ 106 ≈ 8.1 ∗ 106 I/Os.

11

Initials:

(d) (10 points) Consider the plan from part (c). For each of the following 5 changes to it, answer “Y”
(yes) or “N” (no) depending on whether it could have led to a further reduction in the number of
I/Os. Shortly explain your reasoning. Consider each change individually!

1. Pushing down the selection on G.brand and G.price below the join:

N: This would not reduce the number of I/Os. Each index look-up of the index-nested loop would
retrieve one tuple from Guitars, which would then be either selected and joined or not. Since
the results of the join are pipelined, there is no difference in I/Os.

2. Creating a temporary file to store the results of the selection on P.age:

N: This would increase the number of I/Os as we would materialize intermediate results instead
of pipelining them.

3. Have the index on Guitars.gid be clustered:

N: Each index look-up retrieves only one single tuple (due to the foreign key join). Hence, we
need to retrieve exactly one page either way for each lookup.

4. Projecting out Players.age and LastPlayed.date before the join.

Y: By projecting out attributes that are not used later, we can fit more tuples into the single block
that is used for the build relation in the page-oriented nested loop join. Hence, fewer iterations
over LastPlayed.

5. Changing the first join to block-oriented nested loop join:

Y: Block-oriented nested loop join may allows to fit more tuples of the build relation into main
memory and iterate fewer times over LastPlayed.

12

Initials:

4. (14 points) Parallel Databases

Consider the join R(x, y) 1 S(y, z) between two relations, where R and S occupy 1000 and 300 blocks,
respectively.

(a) (4 points) What is the minimum cost in disk I/Os that is needed to join the relations using a
block-nested loop join on a machine with 101 blocks of main memory?

We can use 100 blocks of memory to buffer the smaller relation S. We thus read S in 3 chunks of
size 100, and iterate 3 times over the larger relation R. The total cost is B(S) + 3 ∗B(R) = 3300
I/Os.

(b) (6 points) Now consider you want to execute the same query on a cluster of 4 machines, with
each machine being identical to the one from part (a). Calculate the time needed in I/Os for the
best parallel execution plan you can think of and describe this plan. Assume that tuples for both
relations are equally distributed among the 4 machines in a round-robin fashion. Further assume
that communication cost between the machines are negligible.

We begin by hashing each tuple of S on each machine into 4 buckets by using a hash function that
depends only on the join attributes Y . These 4 buckets represent the 4 machines, and tuples are
shipped to the processor corresponding to their bucket. The total number of disk I/Os needed to
read R is 300, or 75 per machines.

At each machine, these 75 pages can be stored in the 101 available blocks of memory.

Then we repeat the same hashing and shipping for all tuples of R with cost 1000, or 250 per
machine. This operation can be pipelined with the join and the total number of I/Os is [B(S) +
B(R)]/4 = 250 + 75 = 325.

(c) (4 points) Your classmate looks at what you have done and is completely fascinated: “Wow,
you are so awesome! By using 4 instead of 1 machine, you have created a speed-up of more than
factor 10. How on earth did you do that?” Be honest and explain the trick.

By using 4 instead of 1 machines, we also have 4 times the main memory available. For our
example, this allows us to fit the whole build relation into the available memory. We thus only need
to scan the larger relation only once instead of 3 times. We thus only need B(S) +B(R) = 1300
instead of 3300 I/Os. This difference explains the additional difference in time.

13

Initials:

5. (5 points + 5 extra credit) Sorting

A big company in Seattle called amazort.com decides to offer “sorting as a service.” Users can upload
a table of numbers, and the company will sort it for them and provide the sorted result for download.
Unfortunately, after launching their advertising, the executives at amazort.com realize that they have
no idea how to deal with large data. They hire you as a recent cse444 alumni to help them figure this
out. The future of the company’s reputation now relies on your shoulders.

(a) (5 points) The new service sorts one file at a time. You promise the executives that the I/O
count for sorting the file (including reading it from disk and writing the result to disk) will be 4
times that of simply reading it. To guarantee this, you suggest introducing a limit on the size of
file uploads to some number maxsize bytes per file. The amazort.com servers use 64 kilobytes
disk blocks, and have 512 megabytes of memory available for sorting. What value would you
recommend for maxsize in kilobytes?

• I/O cost of 4 times reading the file suggests a two-pass external merge-sort.
• A two-pass external sort can be used as long as B ≤M(M − 1) ≈M2.
• M = 512MB/64kB = 219kB/26kB = 213 blocks.
• Hence, maximal number of blocks is Bmax = 226 blocks.
• Hence, maxsize = 226 ∗ 26kB = 232kB = 4TB.

(b) (5 extra credit) The chief executive of amazort.com is unhappy about the idea of size limits. “We
are amazort.com, we have no limits.” He asks you how many disk I/Os it would take to sort a
file that is arbitrary x bytes big on a single server. At first, you are puzzled: the instructors of
cse444 never taught you how to sort a file that is too big to allow for a two-pass algorithm, and
you almost lose faith in your ability to save the future of amazort.com. After you calm down,
you do what you are good at and why they hired you: you think. Can there be something like a
3-pass / 4-pass / n-pass sort algorithm that deals with increasingly large data? Yes, there is! You
figure out that the second step in the two-pass algorithm simply generalizes, and with that, the
formula for the maximal page size for a n-pass algorithm. Given file size x bytes, and M main
memory blocks (M is sufficiently large to approximate M − 1 ≈M), how many I/Os are needed?

• The generalization from the two-pass sort-merge to the n-pass sort merge algorithm is:
B ≤ M(M − 1)n−1 ≈ Mn. Each step after the initial sorting of files of size M blocks, one
can sort-merge M − 1 files into one file of size M(M − 1). This can be repeated recursively.

• Hence, the maximal file size in bytes that can be sorted with a n-pass algorithm is 216 ∗Mn.
• Using the logarithm, we get the number n that is necessary to sort a file of size x as n =

logM (x/(216)).
• An n-pass sort algorithm reads the file n times and writes it again n times. Hence 2n disk

I/Os are needed for an n-pass sort algorithm.
• Hence, the necessary number of I/Os for size x is 2 logM (x/(216)).

14

Initials:

EXTRA PAGE

15

