Logging and conflict-
serializability

CSE 444 section, July 15, 2010

Today

* Logging and recovery exercises
* |dentifying conflict-serializable schedules

Why do we need to recover a DB?

Why use log-based recovery?

Helps satisfy 2 of the ACID constraints:
* Atomicity
— How does log-based recovery keep TXen atomic?
— How is this done in an undo log?
— In aredo log?
* Durability
— How does logging ensure that TXen persist?

When to use log-based recovery

When it helps:
* When the DBMS program crashes
* When the computer loses power

When it doesn’t help:
 When the disk crashes (both data, log corrupt)
* On user error (database is still consistent)

Our undo log notation

<START T>
— Transaction T has begun

<COMMIT T>
— T has committed

<ABORT T>
— T has aborted

<T, X, v> - Update record
— T has updated element X, and its old value was v

An undo logging problem

Given this undo log, when can each data item be
output to disk?

e A: after P 1 |<START T1>
2 |<T1, A, a>
° B: after 3 3 |<T1, B, b>
4 |<START T2>
e C: after 5, before 12 5 [<12,¢C, >
6 |<START T3>
e D: after 7 7 |<T3,D, d>
8 |[<T2,E, e>
e E: after 8, before 12 5 T<START 725
. 10 (<T4,F, >
* F:after 10 TP
e G: after 11 12 |<COMMIT T2>

Undo logging problem, continued

After writing these log entries, the DBMS
crashes. What does it do when it restarts?

e Scan for transactions to
undo: T1, T3, T4

e G, F D,B, Areverted
(in that order)

e <ABORT> written for
T1, T3, T4

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2,C, c>
<START T3>
<T3, D, d>
<T2,E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

N
NHOLDOO\IO\U'I-hUUNI—\

What if it was a redo log?

Now, <T,X,v> means X’s new value is v!
... SO now when can we output each item?

1 |[<STARTT1>
* C, E: after 12 > T<TL A =5
. 3 |[<T1, B, b>
e Others: never PP TE o
(given log available) > |<T2,G c>
6 |[<START T3>
7 |<T3,D,d>
8 |[<T2,E, e>
9 |[(<START T4>
10 |<T4, F, >
11 |<T3, G, g>
12 [<COMMIT T2>

Redo log problem, continued

How do we recover from this redo log?

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2,C, c>
<START T3>
<T3, D, d>
<T2,E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

e Scan for transactions to

redo: only T2

e Cand E rewritten

(IO WIN|KE

[EEY
o

[HEY
[T

=
N

Why add (non-quiescent) checkpoints?

Undo log recovery with checkpoints

The DBMS crashes with this undo log.
What do we do to recover? e
. . 3 |<T1,B,b>
— Which log entries are read? 4 |<sTART 72>
5 <T2, C, c>
From end to 9: <START CKPT> P Pr—
. . 7 <T3,D, d>
— Which transactions are undone? — 1~ =——
None; all have committed 190 <::AET CKPT {12, T3)>
— Which data do we change? LL L START I4>
12 |<T4,F f>
None; no transactions to undo 13 | <13, 6, g>
14 [<COMMIT T3>
15 [<COMMIT T2>
16 | <END CKPT>
17 [<COMMIT T4>

Redo log recovery with checkpoints

This similar log is a REDO log.

How do we recover this one? e
. . <T1, B, b>
— Which log entries are read? T
From end to 9: <START CKPT> P Prreceioe
Then from 4: <START T2> down to endZ|<13.2. &
8 <COMMIT T1>
— Which transactions are redone? | o |[<STARTckPT(12,T3)>
10 | <T2, E, e>
12, T3, T4 11 | <START T4>
12 | <T4,F, >
— Which data do we change? 13 |<13,6,8
14 | <COMMIT T3>
CéC,Déd,Eée,Féf,Gég-[15 <END CKPT>
16 | <COMMIT T2>
Lines 15, 16 swapped / 6 | scommr

Today

* Logging and recovery exercises
* |dentifying conflict-serializable schedules

Schedules and conflicts

For some transaction T,:

— r,(X) means “T, reads the data element X”
— w,(X) means “T, writes the data element X”

Two actions from T,, T, conflict iff:
 one or both is a write, and

* they act on the same element

Two actions both from T, also conflict

Example 1: find all conflicts

> W3(A)<—

> r1(A)
> Wl(B)

> rz(B) <«

> W;5(C)<

g FZ(C) N

The precedence graph

* Recall: T, must precede T, iff an action from T,
conflicts with a later action from T,

— Ignore conflicting actions from the same
transaction

* Precedence graph shows the precedence
relations

Example 1: precedence graph

A 9W3(A) B C
SE || |
»Wl(B)

Lo (1) (2 (3

c »W3(C) T - ‘

> 1,(C)

Is it conflict serializable?

* YES: if no cycles in the precedence graph

— Any transaction order which follows the
precedences shown is an equivalent serial
schedule

* NO: if there are cycles in the precedence
graph

Example 1: conflict serializable?

»W3(A) .)
A || |
»Wl(B)

e (1) (2) (3
»W3(C) T " ‘
> r,(C)

No cycles: YES, conflict serializable
Only serial equivalent schedule: T,, T,, T,

Example 1: serial equivalent

ws(A) w(A)
ri(A) —> W;(C)
w,(B) ri(A)
r,(B) w,(B)
ws(C) r(B)
r,(C) r,(C)

Only serial equivalent schedule: T,, T,, T,

Example 2: find non-self conflicts

Example 2: precedence graph

r(A)
— (A

A
v
o @#@ 3 @
B

N r3(A) B
r4(B) <«
— w,(A)

Wz(B)g

Example 2: conflict serializable?

ry(A)
A

— I(A) |
o |2 () (o
r,(B) B

—> r3(A) B T - ‘

r,(B) <

— w,(A) Cycle between T, and T,:
w,(B) NO, not conflict serializable

2\l

