
Logging and conflict-
serializability

CSE 444 section, July 15, 2010

Today

• Logging and recovery exercises

• Identifying conflict-serializable schedules

Why do we need to recover a DB?

Why use log-based recovery?

Helps satisfy 2 of the ACID constraints:

• Atomicity

– How does log-based recovery keep TXen atomic?

– How is this done in an undo log?

– In a redo log?

• Durability

– How does logging ensure that TXen persist?

When to use log-based recovery

When it helps:

• When the DBMS program crashes

• When the computer loses power

When it doesn’t help:

• When the disk crashes (both data, log corrupt)

• On user error (database is still consistent)

Our undo log notation

• <START T>

– Transaction T has begun

• <COMMIT T>
– T has committed

• <ABORT T>
– T has aborted

• <T, X, v> - Update record
– T has updated element X, and its old value was v

An undo logging problem

Given this undo log, when can each data item be
output to disk?

• A: after 2

• B: after 3

• C: after 5, before 12

• D: after 7

• E: after 8, before 12

• F: after 10

• G: after 11

1 <START T1>

2 <T1, A, a>

3 <T1, B, b>

4 <START T2>

5 <T2, C, c>

6 <START T3>

7 <T3, D, d>

8 <T2, E, e>

9 <START T4>

10 <T4, F, f>

11 <T3, G, g>

12 <COMMIT T2>

Undo logging problem, continued

After writing these log entries, the DBMS
crashes. What does it do when it restarts?

• Scan for transactions to

undo: T1, T3, T4

• G, F, D, B, A reverted

(in that order)

• <ABORT> written for

T1, T3, T4

1 <START T1>

2 <T1, A, a>

3 <T1, B, b>

4 <START T2>

5 <T2, C, c>

6 <START T3>

7 <T3, D, d>

8 <T2, E, e>

9 <START T4>

10 <T4, F, f>

11 <T3, G, g>

12 <COMMIT T2>

What if it was a redo log?

Now, <T,X,v> means X’s new value is v!

… so now when can we output each item?

• C, E: after 12

• Others: never

(given log available)

1 <START T1>

2 <T1, A, a>

3 <T1, B, b>

4 <START T2>

5 <T2, C, c>

6 <START T3>

7 <T3, D, d>

8 <T2, E, e>

9 <START T4>

10 <T4, F, f>

11 <T3, G, g>

12 <COMMIT T2>

Redo log problem, continued

How do we recover from this redo log?

• Scan for transactions to

redo: only T2

• C and E rewritten

1 <START T1>

2 <T1, A, a>

3 <T1, B, b>

4 <START T2>

5 <T2, C, c>

6 <START T3>

7 <T3, D, d>

8 <T2, E, e>

9 <START T4>

10 <T4, F, f>

11 <T3, G, g>

12 <COMMIT T2>

Why add (non-quiescent) checkpoints?

Undo log recovery with checkpoints

The DBMS crashes with this undo log.

What do we do to recover?

– Which log entries are read?

From end to 9: <START CKPT>

– Which transactions are undone?

None; all have committed

– Which data do we change?

None; no transactions to undo

1 <START T1>

2 <T1, A, a>

3 <T1, B, b>

4 <START T2>

5 <T2, C, c>

6 <START T3>

7 <T3, D, d>

8 <COMMIT T1>

9 <START CKPT (T2, T3)>

10 <T2, E, e>

11 <START T4>

12 <T4, F, f>

13 <T3, G, g>

14 <COMMIT T3>

15 <COMMIT T2>

16 <END CKPT>

17 <COMMIT T4>

Redo log recovery with checkpoints

This similar log is a REDO log.

How do we recover this one?

– Which log entries are read?

From end to 9: <START CKPT>

Then from 4: <START T2> down to end

– Which transactions are redone?

T2, T3, T4

– Which data do we change?

C c, D d, E e, F f, G g

Lines 15, 16 swapped

1 <START T1>

2 <T1, A, a>

3 <T1, B, b>

4 <START T2>

5 <T2, C, c>

6 <START T3>

7 <T3, D, d>

8 <COMMIT T1>

9 <START CKPT (T2, T3)>

10 <T2, E, e>

11 <START T4>

12 <T4, F, f>

13 <T3, G, g>

14 <COMMIT T3>

15 <END CKPT>

16 <COMMIT T2>

17 <COMMIT T4>

Today

• Logging and recovery exercises

• Identifying conflict-serializable schedules

Schedules and conflicts

For some transaction T1:
– r1(X) means “T1 reads the data element X”

– w1(X) means “T1 writes the data element X”

Two actions from T1, T2 conflict iff:

• one or both is a write, and

• they act on the same element

Two actions both from T1 also conflict

Example 1: find all conflicts

w3(A)

r1(A)

w1(B)

r2(B)

w3(C)

r2(C)

The precedence graph

• Recall: T1 must precede T2 iff an action from T1

conflicts with a later action from T2

– Ignore conflicting actions from the same
transaction

• Precedence graph shows the precedence
relations

Example 1: precedence graph

w3(A)

r1(A)

w1(B)

r2(B)

w3(C)

r2(C)

1 2 3

A

C

B

A

B C

Is it conflict serializable?

• YES: if no cycles in the precedence graph

– Any transaction order which follows the
precedences shown is an equivalent serial
schedule

• NO: if there are cycles in the precedence
graph

Example 1: conflict serializable?

w3(A)

r1(A)

w1(B)

r2(B)

w3(C)

r2(C)

1 2 3

A

C

B

A

B C

No cycles: YES, conflict serializable
Only serial equivalent schedule: T3, T1, T2

Example 1: serial equivalent

w3(A)

r1(A)

w1(B)

r2(B)

r2(C)

Only serial equivalent schedule: T3, T1, T2

w3(A)

w3(C)

r1(A)

w1(B)

r2(B)

r2(C)

w3(C)w3(C)

Example 2: find non-self conflicts

r1(A)

r2(A)

r1(B)

r2(B)

r3(A)

r4(B)

w1(A)

w2(B)

Example 2: precedence graph

r1(A)

r2(A)

r1(B)

r2(B)

r3(A)

r4(B)

w1(A)

w2(B)

A

B

1 2 3

B

B
4

A

A

Example 2: conflict serializable?

r1(A)

r2(A)

r1(B)

r2(B)

r3(A)

r4(B)

w1(A)

w2(B)

A

B

1 2 3

B

B
4

A

A

Cycle between T1 and T2:
NO, not conflict serializable

