
Introduction to Database Systems
CSE 444

Lectures 13-14
Transactions: Isolation & ARIES

CSE 444 - Summer 2010 1

Today’s Outline

1. User interface:
1. Read-only transactions
2 Weak isolation levels2. Weak isolation levels
3. Transaction implementation in commercial DBMSs

2. The ARIES recovery methody

• Reading: M. J. Franklin. “Concurrency Control and
R ” P t d l b itRecovery”. Posted on class website

2CSE 444 - Summer 2010

READ-ONLY Transactions
Client 1: START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0 99WHERE price < 0.99

DELETE FROM Product
WHERE price <=0.99

COMMITCOMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION

Can help DBMS
improve

SELECT count(*)
FROM Product

SELECT count(*)

performance

3

SELECT count(*)
FROM SmallProduct
COMMIT CSE 444 - Summer 2010

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READSET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions ACID

4
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 - Summer 2010

Choosing Isolation Level

• Trade-off: efficiency vs correctness

• DBMSs give user choice of level
Always read
DBMS docs!

Beware!!
• Default level is often NOT serializable

DBMS docs!

• Default level differs between DBMSs
• Some engines support subset of levels!
• Serializable may not be exactly ACID

CSE 444 - Summer 2010 5

• Serializable may not be exactly ACID

1. Isolation Level: Dirty Reads

Implementation using locks:
• “Long duration” WRITE locks

– A.k.a Strict Two Phase Locking (you knew that !)
• No READ locks

– Read-only transactions are never delayed

P ibl bl di d i i dPossible problems: dirty and inconsistent reads

6CSE 444 - Summer 2010

2. Isolation Level: Read Committed

Implementation using locks:
• “Long duration” WRITE locks
• “Short duration” READ locks

– Only acquire lock while reading (not 2PL)

• Possible problems: unrepeatable reads
– When reading same element twice, may get two

different values

7CSE 444 - Summer 2010

2. Read Committed in Java
In the handout: Lecture13.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
readAccount();readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

Can see a
different value

In the handout: Lecture13.java – Transaction 2:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db setAutoCommit(false);db.setAutoCommit(false);
writeAccount();
db.commit();

CSE 444 - Summer 2010 8

3 I l ti L l R t bl R d3. Isolation Level: Repeatable Read

Implementation using locks:

• “Long duration” READ and WRITE locks
– Full Strict Two Phase Locking

• This is not serializable yet !!! (Why?)

9CSE 444 - Summer 2010

3. Repeatable Read in Java
In the handout: Lecture13.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
readAccount();readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

Now sees the
same value

In the handout: Lecture13.java – Transaction 2:
db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ);
db setAutoCommit(false);db.setAutoCommit(false);
writeAccount();
db.commit();

CSE 444 - Summer 2010 10

3. Repeatable Read in Java
In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
countAccounts();countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

Can see a
different count

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db setAutoCommit(false);db.setAutoCommit(false);
insertAccount();
db.commit();

11
Note: In PostgreSQL will still see the same count.
But not serializable in general (i.e., other DBs).

4. Serializable in Java
In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
countAccounts();countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

Now should see
same count

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db setAutoCommit(false);db.setAutoCommit(false);
insertAccount();
db.commit();

CSE 444 - Summer 2010 12

Commercial Systems
DB2 Strict 2PL• DB2: Strict 2PL

• SQL Server:
St i t 2PL f t d d 4 l l f i l ti– Strict 2PL for standard 4 levels of isolation

– Multiversion concurrency control for snapshot isolation
• PostgreSQL:• PostgreSQL:

– Multiversion concurrency control
• Oracle• Oracle

– Snapshot isolation even for SERIALIZABLE(!)

CSE 444 - Summer 2010 13

Today’s Outline

1. User interface
2. The ARIES recovery method

• Reading: M. J. Franklin. “Concurrency Control and
Recovery” Posted on class websiteRecovery . Posted on class website

14CSE 444 - Summer 2010

ARIES Overview

• Undo/redo log with lots of clever details

• Physiological logging

• Each log entry has unique Log Sequence
Number, LSN,

CSE 444 - Summer 2010 15

Granularity in ARIES

• Physical logging for REDO (element=one page)
• Logical logging for UNDO (element=one record)g gg g ()
• Result: logs logical operations within a page
• This is called physiological loggingp y g gg g
• Why this choice?

– Must do physical REDO since cannot guarantee that db p y g
is in an action-consistent state after crash

– Must do logical undo because ARIES will only undo
l t ti (thi l f ilit t ROLLBACK)loser transactions (this also facilitates ROLLBACKs)

16CSE 444 - Summer 2010

The LSN

• Each log entry receives a unique Log
Sequence Number, LSN
– The LSN is written in the log entry
– Entries belonging to the same transaction are

chained in the log via prevLSNchained in the log via prevLSN
– LSN’s help us find the end of a circular log file:

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ? 18

17CSE 444 - Summer 2010

Aries Data Structures

• Each page on disk has pageLSN:
= LSN of the last log entry for that page

• Transaction table: each entry has lastLSN
= LSN of the last log entry for that transaction
Transaction table tracks all active transactions

• Dirty page table: each entry has recoveryLSN
= LSN of earliest log entry that made it dirty
Dirty page table tracks all dirty pages

T d di t t bl i i• Txn and dirty page tables in main memory
18CSE 444 - Summer 2010

Checkpoints

• Write into the log
– Contents of transactions table
– Contents of dirty page table

• Very fast ! No waiting, no END CKPT

• But, effectiveness is limited by dirty pages
– There is a background process that periodically

d di t t di ksends dirty pages to disk
CSE 444 - Summer 2010 19

ARIES Recovery in Three Steps
• Analysis pass• Analysis pass

– Figure out what was going on at time of crash
– List of dirty pages and running transactionsy p g g

• Redo pass (repeating history principle)
– Redo all operations, even for transactions that will not

itcommit
– Get back state at the moment of the crash

• Undo passUndo pass
– Remove effects of all uncommitted transactions
– Log changes during undo in case of another crash

d i d
20

during undo
CSE 444 - Summer 2010

ARIES Method Illustration
M b iMay be in

reverse order

21
[Franklin97]

CSE 444 - Summer 2010

Analysis Phase
• Goal

– Determine point in log where to start REDO
– Determine set of dirty pages when crashed

C ti ti t f di t• Conservative estimate of dirty pages
– Identify active transactions when crashed

• Approach
– Rebuild transactions table and dirty pages table
– Start from the latest checkpoint
– Scan the log, and update the two tables accordingly

Find oldest recoveryLSN (firstLSN) in dirty pages tables
22

– Find oldest recoveryLSN (firstLSN) in dirty pages tables
CSE 444 - Summer 2010

Redo Phase

• Goal: redo all updates since firstLSN
• For each log recordg

– If affected page is not in the Dirty Page Table then
do not update

– If affected page is in the Dirty Page Table but
recoveryLSN > LSN of record, then no update

– Else need to read the page from disk; if pageLSNElse need to read the page from disk; if pageLSN
> LSN, then no update

– Otherwise perform update

23CSE 444 - Summer 2010

Undo Phase

• Goal: undo effects of aborted transactions
• Identifies all loser transactions in trans. table
• Scan log backwards

– Undo all operations of loser transactions
– Undo each operation unconditionally
– All ops. logged with compensation log records (CLR)
– Never undo a CLR

• Look-up the UndoNextLSN and continue from there

24CSE 444 - Summer 2010

Handling Crashes during Undo

[Franklin97]

25CSE 444 - Summer 2010

