Lecture 23:
Supplementary slides for P1ig Latin

Friday, May 28, 2010

Outline

Based entirely on Pig Latin: A not-so-foreign
language for data processing, by Olston,

Reed, Srivastava, Kumar, and Tomkins,
2008

Quiz section tomorrow: 1n CSE 403
(this 1s CSE, don’t go to EE1)

Why ?

* Map-reduce 1s a low-level programming
envinroment

* In most applications need more complex
queries

» Pig-latin accepts higher level queries,
translates them to sequences of map-reduce

Pig-Latin Overview

Data model = loosely typed nested relations
Query model = a sql-like, dataflow language

Execution model:
— Option 1: run locally on your machine

— Option 2: compile into sequence of map/reduce, run
on a cluster supporting Hadoop

Main 1dea: use Optl to debug, Opt2 to execute,

Example

 Input: a table of urls:
(url, category, pagerank)

* Compute the average pagerank of all
sufficiently high pageranks, for each
category

* Return the answers only for categories with
sufficiently many such pages

First in SQL. ..

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 10°

...then 1n Pi1g-Latin

good urls = FILTER urls BY pagerank > 0.2
groups = GROUP good urls BY category
big groups = FILTER groups
BY COUNT(good urls) > 10°
output = FOREACH big groups GENERATE
category, AVG(good urls.pagerank)

Types 1n Pig-Latin

Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), ...}

Maps: we will try not to use these

Types 1n Pig-Latin

Bags can be nested !

+(ah, 11,4.35), (e’), (Od7, 12,2,5,3,21);5

Tuple components can be referenced by
number

 §0, $1, $2, ...

t = (‘alice’,{

(‘lakers’, 1) }’[‘age,_,m)

(‘iPod’, 2)

Let fields of tuple t be called £f1, £2, £3

Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20 |
N [(‘lakers’)
Projection £2.$0 <\ (‘iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£f2.$1) 1+2=3
Conditional f3#‘age’>187
. ‘adult’
Expression ‘adult’: ‘minor’ add
: ‘lak ', 1
Flattening FLATTEN (£2) =

“iPod’, 2

Loading data

* Input data = FILES !
— Heard that before ?

 The LOAD command parses an input file
into a bag of records

* Both parser (=“deserializer”) and output
type are provided by user

11

Loading data

queries = LOAD ‘query log.txt’
USING myLoad()
AS (userID, queryString, timeStamp)

12

Loading data

* USING userfuction() --1s optional
— Default deserializer expects tab-delimited file

* AS type — 1s optional

— Default 1s a record with unnamed fields; refer
to them as $0, $1, ...

* The return value of LOAD 1s just a handle
to a bag

— The actual reading 1s done 1n pull mode, or
parallelized

13

FOREACH

expanded queries =
FOREACH queries

GENERATE userld, expandQuery(queryString)

expandQuery() 1s a UDF that produces likely expansions
Note: 1t returns a bag, hence expanded queries i1s a nested bag

14

FOREACH

expanded queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

15

queries:
(userld, queryString, timestamp)

FOREACH qgueries GENERATE
(alice, lakers, 1) expandQuery(queryString)
(bob, iPod, 3) (without flattening)

(e

lakers rumors)
(lakers news)

> (1Pod nano)]
bob, ~(iPod shuffle)

-

(alice, lakers rumors)

with flattening
1 >

(bob, iPod

(alice, lakers news)

nano)

(bob, 1Pod shuffle)

16

FLATTEN

Note that it 1s NOT a first class function !
(that’s one thing I don’t like about Pig-latin)

* First class FLATTEN:
~ FLATTEN({{2,3},{5},{} {456}) = {2.3.5.4,5,6
— Type: {{T}} 2 {T}
e Pig-latin FLATTEN
— FLATTEN({4,5,6})=4, 5, 6
— Type: {T} > T, T, T, ..., T 27777

17

FILTER

Remove all queries from Web bots:

real queries = FILTER queries BY userld neq ‘bot’

Better: use a complex UDF to detect Web bots:

real queries = FILTER queries
BY NOT 1sBot(userld)

18

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

19

results:
(queryString, url, rank)

(lakers, nba.com, 1)

(lakers, espn.com, 2) |

(kings, nhl.com, 1)

(kings, nba.com, 2) —+—
r

revenue:
(queryString, adSlot, amount)

(lakers, top, 50) —
(lakers, side, 20) v

(Ckings, top, 30)
(kings, side, 10) s

(lakers, nba.com, 1, top , S0)
(lakers, nba.com, 1, side, 20)
(lakers, espn.com, 2, top, 50)
(lakers, espn.com, 2, side, 2@)

y

_

20

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped revenue = GROUP revenue BY queryString
query _revenues =

FOREACH grouped revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

grouped revenue: {(queryString, {(adSlot, amount)})}
query revenues: {(queryString, totalRevenue)} 21

Simple Map-Reduce
input : {(field1, field2, field3,)}

map result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map result BY $0

output = FOREACH key groups
GENERATE reduce($1)

map result: {(al, a2, a3, ...)}
key groups: {(al, {(a2, a3,...)})} ”

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped data =
COGROUP results BY queryString,
revenue BY queryString;

grouped data: {(queryString, results: {(url, position)},
revenue: {(adSlot, amount)})}

What 1s the output type in general ?

23

results:
(queryString, url, rank)

(lakers, nba.com, 1)
(lakers, espn.com, 2
(kings, nhl.com, 1)
(kings, nba.com, 2)

revenue.

(queryString, adSlot, amount)

(lakers, top, 50)
(lakers, side, 20)

(kings, top, 30)

(kings, side, 1@)

Is this an inner join, or an outer join ?

Co-Group

grouped_data: (group, results, revenue)

>
: (kings, nhl.com, 1)
(: klngs"{:(kings, nba.com, 2)

-

(lakers, nba.com, 1)
COGROUP (lakers, {(Iakers, espn.com, 2)

-

-

A

o’

(lakers, top, 50)
9 (lakers, side, 20)

R

(kings, top, 30)
(kings, side, 10)

-

24

Co-Group

grouped data: {(queryString, results: {(url, position)},
revenue: {(adSlot, amount)})}

url revenues = FOREACH grouped data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,

and outputs a bag of urls and the revenue attributed to them.
25

Co-Group v.s. Join

grouped data: {(queryString, results

revenue: {(adSlot, amount)})}

:{(url, position)},

grouped data = COGROUP results BY queryString,

revenue
join_result = FOREACH grouped
GENERATE FLAT"

BY queryString;
| data
"EN(results),

FLAT’

"EN(revenue);

Result 1s the same as JOIN

26

Asking for Output: STORE

STORE query revenues INTO myoutput'
USING myStore();

Meaning: write query revenues to the file ‘myoutput’

27

Implementation

Over Hadoop !

Parse query:

— Everything between LOAD and STORE > one
logical plan

Logical plan = sequence of Map/Reduce

ops

All statements between two (CO)GROUPs

-> one Map/Reduce op

28

Implementation

map, reduce, map; reduce;map;,, reduce;,,
load » filter » group ------------ » cogroup ----p cogr:om —>
¢, ." G *Cia
load

29

