Lecture 02: SQL

Wednesday, March 315, 2010
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Accessing SQL Server

Host: [ISQLSRV.cs.washington.edu
Authentication: SQL Server Authentication
User: YOUR_USER_NAME@u.washington.edu
Password: 'cse444login!' (without the quotes)

Change your password !



Outline

Data in SQL

Simple Queries in SQL (6.1)

Queries with more than one relation (6.2)
Subqueries (6.3)



SQL

e Data Definition Language (DDL)
— Create/alter/delete tables and their attributes
— Following lectures...

* Data Manipulation Language (DML)

— Query one or more tables — discussed next !
— Insert/delete/modify tuples in tables



Table name

Tables in SQ

Attribute names

Product Key
PName / Price Category | Manufacturer
Gizmo $19.99 Gadgets | GizmoWorks
Powergizmo $29.99 Gadgets | GizmoWorks
SingleTouch | $149.99 | Photography Canon
MuAItiTouch $203.99 Household Hitachi

Tuples or rows




Data Types in SQL

* Atomic types:
— Characters: CHAR(20), VARCHAR(50)
— Numbers: INT, BIGINT, SMALLINT, FLOAT
— Others: MONEY, DATETIME, ...
e Record (aka tuple)
— Has atomic attributes
* Table (relation)
— A set of tuples



Simple SQL Query

P rOd u Ct PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
SELECT *
FROM  Product
WHERE category="Gadgets’
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
“selection” Powergizmo $29.99 Gadgets GizmoWorks




Simple SQL Query

Product PName Price Category | Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product J L
WHERE Price > 100

PName Price Manufacturer
selection” and SingleTouch |  $149.99 Canon
“projection” MultiTouch $203.99 Hitachi




Details

e (Case insensitive:

SELECT = Select = select
Product = product

BUT: ‘Seattle’ # ‘seattle’
* Constants:
‘abc’ - yes

“abc” - no



Eliminating Duplicates

SELECT DISTINCT category
FROM  Product

Compare to:

SELECT category
FROM Product

=

=

Category

Gadgets

Photography

Household

Category

Gadgets

Gadgets

Photography

Household




Ordering the Results

SELECT pname, price, manufacturer
FROM  Product

WHERE category="gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list.

Ordering is ascending, unless you specify the DESC keyword.



PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT DISTINCT category
FROM  Product
ORDER BY category

SELECT Category
FROM  Product
ORDER BY PName

SELECT DISTINCT category
FROM  Product
ORDER BY PName

$




Keys and Foreign Keys

Company
_~~ CName StockPrice Country
K ey GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan
Product
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 | Photography Canon
MultiTouch $203.99 Household Hitachi

Foreign
key



Joins

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all products under $200 manufactured in
Japan;
return their names and prices. Join

between Product
SELECT PName, Price w
FROM  Prog

AND Country="Japan’
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Joins

Product Company
PName Category Manufacturer Cname StockPrice Country
Gizmo Gadgets GizmoWorks 25 USA
Powergizmo | Gadgets 65
SingleTouch Photography 15 Japan
MultiTouch $203.99 Household

SELECT PName, Price @
FROM  Product, Company

WHERE Manufacturer=CName AND Country="Japan’
AND Price <= 200 PName Price
SingleTouch | $149.99




Tuple Variables

Person(pname, address, worksfor)
Company(cnhame, address)

Which
address ?

SELECT DISTINCT pname, address |
FROM Person, Company
WHERE worksfor = cname

FROM  Person, Company
WHERE Person.worksfor = Company.cname

i> SELECT DISTINCT Person.pname, Company.address

[ SELECT DISTINCT x.pname, y.address
FROM  Person AS x, Company AS y
WHERE x.worksfor = y.cname
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In Class

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all Chinese companies that manufacture
products both in the ‘toy’ category

SELECT cname

FROM

WHERE
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In Class

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all Chinese companies that manufacture
products both in the ‘electronic’ and ‘toy’ categories

SELECT cname

FROM

WHERE
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Meaning (Semantics) of SQL Queries

SELECT a,, a,, ..., a,
FROM R; ASx;, R, ASX,, ..., R, AS X
WHERE Conditions

Answer = {}
for x, in R, do
for x, in R, do
for x,in R, do
if Conditions
then Answer = Answer U {(a,,...,a,)}
return Answer




Using the Formal Semantics

What do these queries compute ?

SELECT DISTINCT R.A ReturnsRN' S
FROM R, S
WHERE R.A=S.A

SELECT DISTINCT R.A If S#oand T#o
FROM R,S, T then returns RN (SUT)

WHERE RA=S.A OR RA=TA| e€lsereturns®




Joins Introduce Duplicates

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all countries that manufacture some product in
the ‘Gadgets’ category.

SELECT Country
FROM  Product, Company
WHERE Manufacturer=CName AND Category="Gadgets’
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Joins Introduce Duplicates

Product
Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 GizmoWorks
SingleTouch | $149.99 | Photography Canon
MultiTouch $203.99 Household Hitachi

Company
Cname StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

FROM

SELECT Country

Product, Company

WHERE Manufacturer=CName AND Category=‘Gadgets’

Duplicates !

Remember to
add DISTINCT

U

Country

USA

USA




Subqueries

* Asubquery is another SQL query nested inside a
larger query

 Such inner-outer queries are called nested queries
e A subguery may occur in:
1. A SELECT clause

2. A FROM clause
3. A WHERE clause

Rule of thumb: avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible




1. Subqueries in SELECT

Product ( pname, price, company)
Company(chame, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cname=X.company)

FROM Product X

What happens if the subquery returns more than one city ?

Dan Suciu -- 444 Spring 2010 24



1. Subqueries in SELECT

Product ( pname, price, company)
Company(chame, city)

Whenever possible, don’t use a nested queries:

SELECT pname, (SELECT city FROM Company WHERE cname=company)
FROM Product

We have
“unnested”
the query

SELECT pname, city
FROM Product, Company
WHERE cname=company




1. Subqueries in SELECT

Product ( pname, price, company)
Company(chame, city)

Compute the number of products made in each city

SELECT DISTINCT city, (SELECT count(*)
FROM Product
WHERE cname=company)

FROM Company

Better: we can unnest by using a GROUP BY (next lecture)



2. Subqgueries in FROM

Product ( pname, price, company)
Company(chame, city)

Find all products whose prices is > 20 and < 30

SELECT X.city
FROM (SELECT * FROM Product AS Y WHERE Y.price > 20) AS X

WHERE X.price < 30

Unnest this query !




3. Subqueries in WHERE

Product ( pname, price, company) [Existential quantifiers}
Company( chame, city)

Find all cities that make some products with price < 100

Using EXISTS:

SELECT DISTINCT Company.city
FROM Company

WHERE EXISTS (SELECT *
FROM Product
WHERE company = cname and Produc.price < 100)
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3. Subqueries in WHERE

Product ( pname, price, company) [Existential quantifiers}
Company( chame, city)

Find all cities that make some products with price < 100

Predicate Calculus (a.k.a. First Order Logic)

{y| 3x. Company(x,y) A (Iz. 3p. Product(z,p,x) A p <100)}




3. Subqueries in WHERE

Product ( pname, price, company) [Existential quantifiers}
Company( chame, city)

Find all cities that make some products with price < 100

Using IN

SELECT DISTINCT Company.city
FROM Company

WHERE Company.cname IN (SELECT Product.company
FROM Product
WHERE Produc.price < 100)




3. Subqueries in WHERE

Product ( pname, price, company) [Existential quantifiers}
Company( chame, city)

Find all cities that make some products with price < 100

Using ANY:

SELECT DISTINCT Company.city
FROM Company

WHERE 100 > ANY (SELECT price
FROM Product
WHERE company = cname)




3. Subqueries in WHERE

Product ( pname, price, company) [Existential quantifiers}
Company( chame, city)

Find all cities that make some products with price < 100

[Now let's unnest it:}

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential quantifiers are easy ! ©
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3. Subqueries in WHERE

Product ( pname, price, company) [Universal quantifiers}
Company( chame, city)

Find all cities with companies
that make only products with price < 100

Universal quantifiers are hard ! ®
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3. Subqueries in WHERE

Product ( pname, price, company) [Universal quantifiers}
Company( cname, city)

Find all cities with companies
that make only products with price < 100

Predicate Calculus (a.k.a. First Order Logic)

{y]| 3x. Company(x,y) A (Vz. Vp. Product(z,p,x) = p <100) }




3. Subqueries in WHERE

De Morgan’s Laws:
“(AAB)=7AV B “(A=B)= AAB
“(AV B)="A A "B

VX P(x) = 3x. 7 P(x)
73X P(x) = V. 7 P(x)

{y| 3x. Company(x,y) A (Vz. Vp. Product(z,p,x) = p < 100) }

{y| 3x. Company(x,y) A —~ (3z3p. Product(z,p,x) A p=100) }

{y| 3x. Company(x,y)) }
A (3z3p. Product(z,p,x) A p=100)}

y
{y| 3x. Company(x,y)




3. Subqueries in WHERE

1. Find the other companies: i.e. s.t. some product = 100

SELECT DISTINCT Company.city
FROM Company

WHERE Company.cname IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

2. Find all companies s.t. all their products have price < 100

SELECT DISTINCT Company.city
FROM Company

WHERE Company.cname NOT IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100




3. Subqueries in WHERE

Product ( pname, price, company) [Universal quantifiers}
Company( chame, city)

Find all cities with companies
that make only products with price < 100

Using EXISTS:

SELECT DISTINCT Company.city
FROM Company

WHERE NOT EXISTS (SELECT *
FROM Product
WHERE company = cname and Produc.price >= 100)
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3. Subqueries in WHERE

Product ( pname, price, company) [Universal quantifiers}
Company( cname, city)

Find all cities that make some products with price < 100

Using ALL:

SELECT DISTINCT Company.city
FROM Company

WHERE 100 > ALL (SELECT price
FROM Product
WHERE company = cname)




Question for Database Fans
and their Friends

 Can we unnest the universal quantifier query ?



Monotone Queries
A query Q is if:

— Whenever we add tuples to one or more of the tables...
— ... the answer to the query cannot contain fewer tuples

Fact: all unnested queries are monotone
— Proof: using the “nested for loops” semantics

Fact: A query a universal quantifier is not monotone

Consequence: we cannot unnest a query with a
universal quantifier




Queries that must be nested

* Queries with universal quantifiers or with
negation

* The drinkers-bars-beers example next

* This is a famous example from textbook on
databases by Ullman



The drinkers-bars-beers example

Likes(drinker, beer)
Frequents(drinker, bar) [Challenge: write these in SQL}
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

x: dy. dz. Frequents(x, y)aServes(y,z)aLikes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

x: VYy. Frequents(x, y)= (3z. Serves(y,z)aLikes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x: 3dy. Frequents(x, y)aVz.(Serves(y,z) = Likes(x,z))

Find drinkers that frequent only bars that serves only beer they like.

x: VYy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))




