Lecture 02: SQL

Wednesday, March 315, 2010

Dan Suciu -- 444 Spring 2010

Accessing SQL Server

Host: [ISQLSRV.cs.washington.edu
Authentication: SQL Server Authentication
User: YOUR_USER_NAME@u.washington.edu
Password: 'cse444login!' (without the quotes)

Change your password !

Outline

Data in SQL

Simple Queries in SQL (6.1)

Queries with more than one relation (6.2)
Subqueries (6.3)

SQL

e Data Definition Language (DDL)
— Create/alter/delete tables and their attributes
— Following lectures...

* Data Manipulation Language (DML)

— Query one or more tables — discussed next !
— Insert/delete/modify tuples in tables

Table name

Tables in SQ

Attribute names

Product Key
PName / Price Category | Manufacturer
Gizmo $19.99 Gadgets | GizmoWorks
Powergizmo $29.99 Gadgets | GizmoWorks
SingleTouch | $149.99 | Photography Canon
MuAItiTouch $203.99 Household Hitachi

Tuples or rows

Data Types in SQL

* Atomic types:
— Characters: CHAR(20), VARCHAR(50)
— Numbers: INT, BIGINT, SMALLINT, FLOAT
— Others: MONEY, DATETIME, ...
e Record (aka tuple)
— Has atomic attributes
* Table (relation)
— A set of tuples

Simple SQL Query

P rOd u Ct PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
SELECT *
FROM Product
WHERE category="Gadgets’
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
“selection” Powergizmo $29.99 Gadgets GizmoWorks

Simple SQL Query

Product PName Price Category | Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product J L
WHERE Price > 100

PName Price Manufacturer
selection” and SingleTouch | $149.99 Canon
“projection” MultiTouch $203.99 Hitachi

Details

e (Case insensitive:

SELECT = Select = select
Product = product

BUT: ‘Seattle’ # ‘seattle’
* Constants:
‘abc’ - yes

“abc” - no

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

=

=

Category

Gadgets

Photography

Household

Category

Gadgets

Gadgets

Photography

Household

Ordering the Results

SELECT pname, price, manufacturer
FROM Product

WHERE category="gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list.

Ordering is ascending, unless you specify the DESC keyword.

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT Category
FROM Product
ORDER BY PName

SELECT DISTINCT category
FROM Product
ORDER BY PName

$

Keys and Foreign Keys

Company
_~~ CName StockPrice Country
K ey GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan
Product
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 | Photography Canon
MultiTouch $203.99 Household Hitachi

Foreign
key

Joins

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all products under $200 manufactured in
Japan;
return their names and prices. Join

between Product
SELECT PName, Price w
FROM Prog

AND Country="Japan’

Dan Suciu -- 444 Spring 2010 14

Joins

Product Company
PName Category Manufacturer Cname StockPrice Country
Gizmo Gadgets GizmoWorks 25 USA
Powergizmo | Gadgets 65
SingleTouch Photography 15 Japan
MultiTouch $203.99 Household

SELECT PName, Price @
FROM Product, Company

WHERE Manufacturer=CName AND Country="Japan’
AND Price <= 200 PName Price
SingleTouch | $149.99

Tuple Variables

Person(pname, address, worksfor)
Company(cnhame, address)

Which
address ?

SELECT DISTINCT pname, address |
FROM Person, Company
WHERE worksfor = cname

FROM Person, Company
WHERE Person.worksfor = Company.cname

i> SELECT DISTINCT Person.pname, Company.address

[SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname

Dan Suciu -- 444 Spring 20710 16

In Class

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all Chinese companies that manufacture
products both in the ‘toy’ category

SELECT cname

FROM

WHERE

Dan Suciu -- 444 Spring 2010

17

In Class

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all Chinese companies that manufacture
products both in the ‘electronic’ and ‘toy’ categories

SELECT cname

FROM

WHERE

Dan Suciu -- 444 Spring 2010

Meaning (Semantics) of SQL Queries

SELECT a,, a,, ..., a,
FROM R; ASx;, R, ASX,, ..., R, AS X
WHERE Conditions

Answer = {}
for x, in R, do
for x, in R, do
for x,in R, do
if Conditions
then Answer = Answer U {(a,,...,a,)}
return Answer

Using the Formal Semantics

What do these queries compute ?

SELECT DISTINCT R.A ReturnsRN' S
FROM R, S
WHERE R.A=S.A

SELECT DISTINCT R.A If S#oand T#o
FROM R,S, T then returns RN (SUT)

WHERE RA=S.A OR RA=TA| e€lsereturns®

Joins Introduce Duplicates

Product (pname, price, category, manufacturer)
Company (chame, stockPrice, country)

Find all countries that manufacture some product in
the ‘Gadgets’ category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category="Gadgets’

Dan Suciu -- 444 Spring 2010 21

Joins Introduce Duplicates

Product
Name Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 GizmoWorks
SingleTouch | $149.99 | Photography Canon
MultiTouch $203.99 Household Hitachi

Company
Cname StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

FROM

SELECT Country

Product, Company

WHERE Manufacturer=CName AND Category=‘Gadgets’

Duplicates !

Remember to
add DISTINCT

U

Country

USA

USA

Subqueries

* Asubquery is another SQL query nested inside a
larger query

 Such inner-outer queries are called nested queries
e A subguery may occur in:
1. A SELECT clause

2. A FROM clause
3. A WHERE clause

Rule of thumb: avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible

1. Subqueries in SELECT

Product (pname, price, company)
Company(chame, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cname=X.company)

FROM Product X

What happens if the subquery returns more than one city ?

Dan Suciu -- 444 Spring 2010 24

1. Subqueries in SELECT

Product (pname, price, company)
Company(chame, city)

Whenever possible, don’t use a nested queries:

SELECT pname, (SELECT city FROM Company WHERE cname=company)
FROM Product

We have
“unnested”
the query

SELECT pname, city
FROM Product, Company
WHERE cname=company

1. Subqueries in SELECT

Product (pname, price, company)
Company(chame, city)

Compute the number of products made in each city

SELECT DISTINCT city, (SELECT count(*)
FROM Product
WHERE cname=company)

FROM Company

Better: we can unnest by using a GROUP BY (next lecture)

2. Subqgueries in FROM

Product (pname, price, company)
Company(chame, city)

Find all products whose prices is > 20 and < 30

SELECT X.city
FROM (SELECT * FROM Product AS Y WHERE Y.price > 20) AS X

WHERE X.price < 30

Unnest this query !

3. Subqueries in WHERE

Product (pname, price, company) [Existential quantifiers}
Company(chame, city)

Find all cities that make some products with price < 100

Using EXISTS:

SELECT DISTINCT Company.city
FROM Company

WHERE EXISTS (SELECT *
FROM Product
WHERE company = cname and Produc.price < 100)

Dan Suciu™=--444"5pring 2010 28

3. Subqueries in WHERE

Product (pname, price, company) [Existential quantifiers}
Company(chame, city)

Find all cities that make some products with price < 100

Predicate Calculus (a.k.a. First Order Logic)

{y| 3x. Company(x,y) A (Iz. 3p. Product(z,p,x) A p <100)}

3. Subqueries in WHERE

Product (pname, price, company) [Existential quantifiers}
Company(chame, city)

Find all cities that make some products with price < 100

Using IN

SELECT DISTINCT Company.city
FROM Company

WHERE Company.cname IN (SELECT Product.company
FROM Product
WHERE Produc.price < 100)

3. Subqueries in WHERE

Product (pname, price, company) [Existential quantifiers}
Company(chame, city)

Find all cities that make some products with price < 100

Using ANY:

SELECT DISTINCT Company.city
FROM Company

WHERE 100 > ANY (SELECT price
FROM Product
WHERE company = cname)

3. Subqueries in WHERE

Product (pname, price, company) [Existential quantifiers}
Company(chame, city)

Find all cities that make some products with price < 100

[Now let's unnest it:}

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential quantifiers are easy ! ©

Dan Suciu -- 444 Spring 2010 32

3. Subqueries in WHERE

Product (pname, price, company) [Universal quantifiers}
Company(chame, city)

Find all cities with companies
that make only products with price < 100

Universal quantifiers are hard ! ®

Dan Suciu -- 444 Spring 2010 33

3. Subqueries in WHERE

Product (pname, price, company) [Universal quantifiers}
Company(cname, city)

Find all cities with companies
that make only products with price < 100

Predicate Calculus (a.k.a. First Order Logic)

{y]| 3x. Company(x,y) A (Vz. Vp. Product(z,p,x) = p <100) }

3. Subqueries in WHERE

De Morgan’s Laws:
“(AAB)=7AV B “(A=B)= AAB
“(AV B)="A A "B

VX P(x) = 3x. 7 P(x)
73X P(x) = V. 7 P(x)

{y| 3x. Company(x,y) A (Vz. Vp. Product(z,p,x) = p < 100) }

{y| 3x. Company(x,y) A —~ (3z3p. Product(z,p,x) A p=100) }

{y| 3x. Company(x,y)) }
A (3z3p. Product(z,p,x) A p=100)}

y
{y| 3x. Company(x,y)

3. Subqueries in WHERE

1. Find the other companies: i.e. s.t. some product = 100

SELECT DISTINCT Company.city
FROM Company

WHERE Company.cname IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

2. Find all companies s.t. all their products have price < 100

SELECT DISTINCT Company.city
FROM Company

WHERE Company.cname NOT IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

3. Subqueries in WHERE

Product (pname, price, company) [Universal quantifiers}
Company(chame, city)

Find all cities with companies
that make only products with price < 100

Using EXISTS:

SELECT DISTINCT Company.city
FROM Company

WHERE NOT EXISTS (SELECT *
FROM Product
WHERE company = cname and Produc.price >= 100)

Dan Suciu -- 444 Spring 2010 37

3. Subqueries in WHERE

Product (pname, price, company) [Universal quantifiers}
Company(cname, city)

Find all cities that make some products with price < 100

Using ALL:

SELECT DISTINCT Company.city
FROM Company

WHERE 100 > ALL (SELECT price
FROM Product
WHERE company = cname)

Question for Database Fans
and their Friends

 Can we unnest the universal quantifier query ?

Monotone Queries
A query Q is if:

— Whenever we add tuples to one or more of the tables...
— ... the answer to the query cannot contain fewer tuples

Fact: all unnested queries are monotone
— Proof: using the “nested for loops” semantics

Fact: A query a universal quantifier is not monotone

Consequence: we cannot unnest a query with a
universal quantifier

Queries that must be nested

* Queries with universal quantifiers or with
negation

* The drinkers-bars-beers example next

* This is a famous example from textbook on
databases by Ullman

The drinkers-bars-beers example

Likes(drinker, beer)
Frequents(drinker, bar) [Challenge: write these in SQL}
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

x: dy. dz. Frequents(x, y)aServes(y,z)aLikes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

x: VYy. Frequents(x, y)= (3z. Serves(y,z)aLikes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x: 3dy. Frequents(x, y)aVz.(Serves(y,z) = Likes(x,z))

Find drinkers that frequent only bars that serves only beer they like.

x: VYy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

