
Optimistic concurrency control

CSE 444, fall 2010 — section 6 worksheet

November 4, 2010

Our notation for actions in a schedule:

• stk: transaction Tk begins

• rk(X): Tk reads database element X

• wk(X): Tk writes database element X

• comk: Tk commits

Other notation will be introduced as needed.

1 Timestamps

Each of the following schedules is presented to a timestamp-based scheduler. Assume that the read and
write timestamps of each element start at 0 (RT(X) = WT(X) = 0), and the commit bits for each element
are set (C(X) = 1). Please tell what happens as each schedule executes.

1. st1, st2, st3, r1(A), r2(B), w1(C), r3(B), r3(C), w2(B), w3(A)

Solution:
The scheduler proceeds as follows:

• st1, st2, st3: We assign timestamps in the order the transactions start; here I let TS(T1) := 1,
TS(T2) := 2, and TS(T3) := 3.

• r1(A): OK because element A hasn’t yet been written (WT(A) = 0). Sets RT(A) := (TS(T1) =
1).

• r2(B): OK because WT(B) = 0. Sets RT(B) := 2.

• w1(C): OK because C hasn’t yet been read or written (RT(C) = WT(C) = 0). Sets WT(C) := 1
and C(C) := 0.

• r3(B): OK because WT(B) = 0. Sets RT(B) := 3.

• r3(C): We have (WT(C) = 1) ≤ 3, but C(C) = 0 because T1 has not yet committed or aborted.
Delay T3 until C(C) = 1 or T1 aborts, then recheck timestamps and retry this action.

• w2(B): We have (RT(B) = 3) > 2, so allowing this write would cause awrite too late anomaly,
because T3 should have read the value about to be written by T2, which comes earlier in the
serialization order. Rollback T2.

• w3(A): Wait until and unless T3 is unblocked and r3(C) above succeeds. If T3 is later aborted,
then do not execute this action.

1



2. st1, st3, st2, r1(A), r2(B), w1(C), r3(B), r3(C), w2(B), w3(A)

Solution:
This schedule is the same as the one above, except now T3 precedes T2. The scheduler proceeds as
follows:

• st1, st3, st2: Let TS(T1) := 100, TS(T2) := 300, and TS(T3) := 200.

• r1(A): OK because WT(A) = 0. Sets RT(A) := 100.

• r2(B): OK because WT(B) = 0. Sets RT(B) := 300.

• w1(C): OK because RT(C) = WT(C) = 0. Sets WT(C) := 100 and C(C) := 0.

• r3(B): OK because WT(B) = 0. Does not change RT(B) because (RT(B) = 300) > 200.

• r3(C): We have (WT(C) = 100) ≤ 200, but C(C) = 0 because T1 has not yet committed or
aborted. Delay T3 until C(C) = 1 or T1 aborts, then recheck timestamps and retry this action.

• w2(B): OK because (RT(B) = 300) ≤ 300 and (WT(B) = 0) ≤ 300. Sets WT(B) := 300 and
C(B) := 0.

• w3(A): Wait until and unless T3 is unblocked and r3(C) above succeeds. If T3 is later aborted,
then do not execute this action.

3. st1, st2, st3, r1(A), r2(B), r2(C), r3(B), com2, w3(B), w3(C)

Solution:
The scheduler does the following:

• st1, st2, st3: Let TS(T1) := 1, TS(T2) := 2, and TS(T3) := 3.

• r1(A): OK because WT(A) = 0. Sets RT(A) := 1.

• r2(B): OK because WT(B) = 0. Sets RT(B) := 2.

• r2(C): OK because WT(C) = 0. Sets RT(C) := 2.

• r3(B): OK because WT(B) = 0. Sets RT(B) := 3.

• com2: Does nothing because T2 didn’t make any changes.

• w3(B): OK because (RT(B) = 3) ≤ 3 and (WT(B) = 0) ≤ 3. Sets WT(B) := 3 and C(B) := 0.

• w3(C): OK because (RT(C) = 2) ≤ 3 and (WT(C) = 0) ≤ 3. Sets WT(C) := 3 and C(C) := 0.

2



4. st1, st2, r1(A), r2(B), w2(A), com2, w1(B)

Solution:
The scheduler does the following:

• st1, st2: Let TS(T1) := 1 and TS(T2) := 2.

• r1(A): OK because WT(A) = 0. Sets RT(A) := 1.

• r2(B): OK because WT(B) = 0. Sets RT(B) := 2.

• w2(A): OK because (RT(A) = 1) ≤ 2 and (WT(A) = 0) ≤ 2. Sets WT(A) := 2 and C(A) := 0.

• com2: Set C(A) := 1 because T2 was the last transaction to write A, as determined by WT(A).

• w1(B): Rollback T1, because (RT(B) = 2) > 1.

5. st1, st3, st2, r1(A), r2(B), r3(B), w3(A), w2(B), com3, w1(A)

Solution:
The scheduler does the following:

• st1, st3, st2: Let TS(T1) := 100, TS(T2) := 300, and TS(T3) := 200.

• r1(A): OK because WT(A) = 0. Sets RT(A) := 100.

• r2(B): OK because WT(B) = 0. Sets RT(B) := 300.

• r3(B): OK because WT(B) = 0. Does not change RT(B) because (RT(B) = 300) > 200.

• w3(A): OK because (RT(A) = 100) ≤ 200 and (WT(A) = 0) ≤ 200. Sets WT(A) := 200 and
C(A) := 0.

• w2(B): OK because (RT(B) = 300) ≤ 300 and (WT(B) = 0) ≤ 300. Sets WT(B) := 300 and
C(B) := 0.

• com3: Set C(A) := 1 because T3 was the last transaction to write A, as determined by WT(A).

• w1(A): Ignore this write, because while (RT(A) = 100) ≤ 100, we have (WT(A) = 200) > 100
and C(A) = 1, so we know that a later, committed transaction has already written to A (the
Thomas write rule).

3



6. st1, r1(A), w1(A), st2, r2(C), w2(B), r2(A), w1(B)

Solution:
The scheduler does the following:

• st1: Let TS(T1) := 1.

• r1(A): OK because WT(A) = 0. Sets RT(A) := 1.

• w1(A): OK because (RT(A) = 1) ≤ 1 and (WT(A) = 0) ≤ 1. Sets WT(A) := 1 and C(A) := 0.

• st2: Let TS(T2) := 2.

• r2(C): OK because WT(C) = 0. Sets RT(C) := 2.

• w2(B): OK because RT(B) = WT(B) = 0. Sets WT(B) := 2 and C(A) := 0.

• r2(A): We have (WT(A) = 1) ≤ 2, but C(A) = 0 because T1 has not yet committed or aborted.
Delay T2 until C(A) = 1 or T1 aborts, then recheck timestamps and retry this action.

• w1(B): We have (RT(B) = 0) ≤ 1, but (WT(A) = 2) > 1. We cannot ignore this write, however,
because C(A) = 0 and T2 was the last writer. We should delay T1 until C(B) = 1 or T2 aborts,
then recheck timestamps and retry this action.

Notice that T2 is blocked waiting for T1 to commit or abort, but T1 is also blocked, waiting for T2 to
commit or abort. This circular wait represents a deadlock between the two transactions, which must
be broken externally.

4



2 Multi-version timestamps

Tell what happens during the following schedules if we use a multi-version timestamp scheduler. What
happens if the scheduler does not maintain multiple versions?

1. st1, st2, st3, st4, w1(A), com1, w2(A), w3(A), com3, r2(A), com2, r4(A), com4

Solution:
Each attempt to write to element A creates a new copy of A, and the write occurs on the copy, rather
than on the original copy of A (call it A0), which is never written. Hence, we have copies A1, A2,
and A3, representing the new data written by transactions T1, T2, and T3 respectively.

The read attempts then read from the copy of A with the highest timestamp no greater than the
timestamp of the read action’s transaction. Hence, r2(A) will read A2, the most recent copy T2 can
see, while r4(A) reads A3, which was the most recent copy prior to T4 in the serialization order.

If we did not use a multi-version scheduler, then the first read r2(A) would cause T2 to be rolled
back, because a later transaction (T3) has already written to A. The second read r4(A) would succeed,
however, and would read the last value written by T3.

2. st1, st2, st3, st4, w1(A), com1, w3(A), com3, r4(A), com4, r2(A), com2

Solution:
The two write actions on element A create new versions A1 and A3, corresponding to the writes
w1(A) by T1, and w3(A) by T3.

Then, r4(A) reads version A3, the version with the highest timestamp not greater than T4’s, and
similarly r2(A) reads version A1.

Without a multi-version scheduler, the first read r4(A) would succeed because no transaction with
higher timestamp than T4 wrote A. However, the second read r2(A) would fail and force T2 to
rollback because the later T3 had already written A.

5



3. st1, st2, st3, st4, w1(A), com1, w4(A), com4, r3(A), com3, w2(A), com2

Solution:
The first two actions on element A create new versions A1 and A4, corresponding to the writes w1(A)
by T1, and w4(A) by T4. Then, r3(A) reads version A1, the version with the highest timestamp not
greater than T3’s.

However, the last action w2(A) fails, causing T2 to roll back. This is because if allowed, w2(A) would
create a version A2, whose immediately previous version would be A1. But we notice from A1’s read
timestamp that A1 has already been read by T3. Hence, if the write w2(A) were allowed, then T3
should have read the new version A2 instead of A1 which it actually read. This write is thus a write
too late, and so must not be allowed.

Without a multi-version scheduler, the read r3(A) would fail and roll back T3, because A has already
been written by the later transaction T4. The last write w2(A) would not fail, because the read r3(A)
did not happen. But this write would still be ignored, because the later T4 has already committed a
new value for A.

6



3 Validation

For the following schedules:

• Rk(X) means “transaction Tk starts, and its read set is the list of database elements X,”

• Vk means “Tk tries to validate,” and

• Wk(x) means “Tk finished, and its write set was X.”

Note: Remember that each transaction must inform the scheduler of both its read and write sets when
it begins, or when it validates (at the latest). While the notation we use implies otherwise, and hence is
slightly confusing, we use it to be consistent with your textbook’s notation.

Tell what happens when each schedule is processed by a validation-based scheduler.

1. R1(A, B), R2(B, C), R3(C), V1, V2, V3, W1(A), W2(B), W3(C)

Solution:
T1 is the first transaction to try to validate; as there are no other transactions to check against, T1
obviously validates successfully.

Next, T2 tries to validate. The only other validated transaction is T1, and T1 did not finish before T2
started, so we need to check the read set of T2 against the write set of T1, to make sure that T2 hasn’t
read any element for which T1 has written an as-yet-uncommitted new value. And indeed, we find
that RS(T2) ∩WS(T1) = ∅, so this check passes.

Not only did T1 not finish before T2 started, it still isn’t finished now, as we are validating T2. Hence,
we also need to check the write set of T2 against the write set of T1 to make sure that T1, which is
earlier in the serialization order, doesn’t overwrite any of T2’s changes to the database. This check
also passes, as we find that WS(T2) ∩WS(T1) = ∅. With both checks of T2 passing, we can thus
validate T2 successfully.

Finally, T3 tries to validate. The other validated transactions are T1 and T2, and both transactions
were unfinished when T3 started, so we check T3’s read set against both T1 and T2’s write sets. No
elements are in both T3’s read set and either of the other transactions’ write sets, so those checks
pass. Because both T1 and T2 are still active now, as T3 is being validated, we also check T3’s write
set against the others’ write sets, and again with no intersection, the checks pass. Hence T3 validates
successfully.

7



2. R1(A, B), R2(B, C), R3(C), V1, V2, V3, W1(C), W2(B), W3(A)

Solution:
This schedule has the same transactions and read sets as the previous one, but different write sets.
As with the previous schedule, T1 trivially validates because it’s first to try to validate.

Next, T2 tries to validate. The only other validated transaction is T1, and T1 did not finish before
T2 started, so we need to check RS(T2) against WS(T1). We find that RS(T2) ∩WS(T1) = {C} is
nonempty, so the check fails, and T2 cannot be validated. Having failed validation, T2 is rolled back.

Finally, T3 tries to validate. The only other validated transaction is still T1, which was unfinished
when T3 started, so we check T3’s read set against T1’s write set. Once again, we find that the sets’
intersection is nonempty (RS(T3) ∩WS(T1) = {C}), so T3 is not validated and is rolled back.

3. R1(A, B), R2(B, C), R3(C), V1, V2, V3, W1(A), W2(C), W3(B)

Solution:
This schedule differs from the last two only in write sets. Once again, T1 validates because it’s first
to attempt it, so there are no other validated transactions to check against.

Next, T2 tries to validate. The only other validated transaction is T1, and T1 did not finish before T2
started, so we check that RS(T2) ∩WS(T1) = ∅. In addition, T1 is still not finished now, so we check
that WS(T2) ∩WS(T1) = ∅. Both checks pass, so T2 validates.

Finally, T3 tries to validate. The other validated transactions are T1 and T2. Both transactions were
unfinished when T3 started, so we check that RS(T3) ∩WS(T1) = ∅ and that RS(T3) ∩WS(T2) = ∅.
The first check passes, but the second does not (RS(T3) ∩WS(T2) = {C}), so T3 does not validate
and gets rolled back.

8



4. R1(A, B), R2(B, C), V1, R3(C, D), V3, W1(C), V2, W2(A), W3(D)

Solution:
As always, the first transaction to try to validate (T1 in this case) succeeds, because there are no
previously validated transactions to check against.

Next, T3 tries to validate. T1 is the only other validated transaction, so we need to check T3 against
T1. Because T1 did not finish before T3 started, we check that RS(T3) ∩WS(T1) = ∅, and because T1
is still unfinished now, we also check that WS(T3) ∩WS(T1) = ∅. The first condition does not hold
(RS(T3) ∩WS(T1) = {C}), so T3 does not validate and must be rolled back.

Finally, T2 tries to validate. The only other validated transaction is T1, and because it did not finish
before T2 started, we check that RS(T2) ∩WS(T1) = ∅. (We don’t need to check that WS(T2) ∩
WS(T1) = ∅, because T1 finished before now, the validation time for T2.) However, element C is in
both sets, so the check fails and T2 fails to validate.

9


	1 Timestamps
	2 Multi-version timestamps
	3 Validation

