Logging and conflict-
serializability

CSE 444 section
October 28, 2010

Today

* Logging and recovery review
* |dentifying conflict-serializable schedules

Why use logs to recover from crashes?

Helps satisfy 2 of the ACID constraints:
* Atomicity
— How does log-based recovery keep TXen atomic?
— How is this done in an undo log?
— In aredo log?
* Durability
— How does logging ensure that TXen persist?

Our undo log notation

<START T>
— Transaction T has begun

<COMMIT T>

— T has committed

<ABORT T>
— T has aborted

<T, X, v> - Update record
— T has updated element X, and its o/d value was v

An undo logging problem

Given this undo log, when can each data item be
output to disk?

° AI aﬁer 2 1 |[<START T1>
2 |<T1, A, a>
e B: after 3 3 |<T1,B,b>
4 |<START T2>
e C: after 5, before 12 5 |<12,C, 0>
6 |<START T3>
e D: after7 7 |<T3, D, d>
8 |<T2,E, e>
e E:after 8, before 12 o [<START Ta>
10 |<T4, F, f>
e F:after 10 1 <3066
° G: aﬁ-.er 11 12 |<COMMIT T2> ;

Undo logging problem, continued

After writing these log entries, the DBMS
crashes. What does it do when it restarts?

e Scan for transactions to
undo:T1, T3, T4

e G, F D, B, Areverted
(in that order)

e <ABORT> written for
T1, T3, T4

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2,C, c>
<START T3>
<T3, D, d>
<T2,E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

===
NHOLDOO\IO\U'IAUUNI—\

What if it was a redo log?

Now, <T,X,v> means X’s new value is v!
... S0 now when can we output each item?
1 |<START T1>

e C, E: after 12

<T1, A, a>
e Others: never

<T1, B, b>
<START T2>
<T2,C, c>
<START T3>
<T3, D, d>
<T2,E, e>
<START T4>
<T4, F, f>

<T3, G, g>
<COMMIT T2>

(given log available)

VIO [WIN

[EEY
o

[N
[N

=
N

Redo log problem, continued

How do we recover from this redo log?

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2,C, c>
<START T3>
<T3, D, d>
<T2,E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

e Scan for transactions to

redo: only T2

e Cand E rewritten

IO [WIN|[F

[EEY
o

[N
[N

=
N

Why add (non-quiescent) checkpoints?

Undo log recovery with checkpoints

The DBMS crashes with this undo log.
What do we do to recover? T n
. . 3 <T1, B, b>
— Which log entries are read? s | <sTARTT2>
. 5 <T2,C, c>
From end to 9: <START CKPT> R P
. . 7 <T3, D, d>
— Which transactions are undone? . > -—
None; all have committed 9 | <START CKPT (T2, T3)>
10 [<T2,E, e>
— Which data do we change? L SSTARTTE>
12 | <714, F, >
None; no transactions to undo 13 |<T3,6G,g>
14 | <COMMIT T3>
15 | <COMMIT T2>
16 | <END CKPT>
17 | <COMMIT T4>

10

Redo log recovery with checkpoints

This similar log is a REDO log.

How do we recover this one?

— Which log entries are read?
From end to 9: <START CKPT>

Then from 4: <START T2> down to en
— Which transactions are redone?

T2, T3, T4
— Which data do we change?
C<ce,DECdESCe FEfGEg

/

Lines 15, 16 swapped

1

<START T1>

<T1, A, a>

<T1, B, b>

<START T2>

<T2,C, c>

<START T3>

<T3, D, d>

<COMMIT T1>

O |00 |IN | | | W IN |-

<START CKPT (T2, T3)>

[EEN
o

<T2, E, e>

[y
=

<START T4>

[EEN
N

<T4, F, f>

[EEN
w

<T3, G, g>

=
o

<COMMIT T3>

[EEN
w

<END CKPT>

[EEN
[e)]

<COMMIT T2>

[EEN
~N

<COMMIT T4>

11

Today

* Logging and recovery review
* |dentifying conflict-serializable schedules

12

Schedules and conflicts

For some transaction T,:

— r,(X) means “T, reads the data element X”
— w,(X) means “T, writes the data element X”

Two actions from T,, T, conflict iff:
* one or both is a write, and

* they act on the same element
Two actions both from T, also conflict

Example 1: find all conflicts

> W3(A)<_

g rl(A)

> W1(B)

> rz(B) <«

> W3(C)e

g rz(C) N

The precedence graph

* Recall: T, must precede T, iff an action from T,
conflicts with a later action from T,

— Ignore conflicting actions from the same
transaction

* Precedence graph shows the precedence
relations

Example 1: precedence graph

A > WslA) B C
A || \
’W1(B)

oo (1) (2] (3

; >W3(C) T " ‘

> 1,(C)

Is it conflict serializable?

* YES: if no cycles in the precedence graph

— Any transaction order which follows the
precedences shown is an equivalent serial
schedule

* NO: if there are cycles in the precedence

graph

Example 1: conflict serializable?

>W3(A) . .
SE N || |
’W1(B)

e (U () (3
>W3(C) T " ‘
> 1,(C)

No cycles: YES, conflict serializable
Only serial equivalent schedule: T;, T,, T,

18

Example 1: serial equivalent

ws(A) ws(A)
ri(A) —> w;(C)
w,(B) r(A)
r(B) w,(B)
w;(C) r,(B)
r,(C) r,(C)

Only serial equivalent schedule: T,;, T, T,

Example 2: find non-self conflicts

ry(A)
— r,(A)
ry(B) <

Example 2: precedence graph

ry(A) R
— r,(A) |
r,(B) < A
r,(B) @T@ @ @
oA s T : ‘
r4(B) <

— w,(A)

Wz(B);

Example 2: conflict serializable?

ri(A)
A
— I(A) |
o |) (o
r,(B) B
— rB(A) B T ‘
B
r,(B) <
— Wy(A) Cycle between T, and T,:
W, (B)- NO, not conflict serializable

22

