
IISQLSRV and SQL (re-)
introduction
CSE 444 section

September 30, 2010

1

Today

•  IISQLSRV and Management Studio
•  SQL practice

2

About section and the TA

•  Section in EE1 025 on Thursdays
– AA: 8:30-9:20, AB: 9:30-10:20
– Feel free to come to either

•  Me: Michael Ratanapintha
– michaelr@cs.washington.edu
– Office hours: Thurs. 10:30-noon in CSE 006

3

The dreaded icebreaker…

4

Connecting to
IISQLSRV

5

IISQLSRV connection settings

From yesterday’s lecture:
•  Server: iisqlsrv.cs.washington.edu
•  Use SQL Server Authentication
•  Username: your UW NetID
•  Password: see lecture 1

– Write this down NOW, we won’t say it again
– You’ll have to change it on first login

6

IMDB database

Actor (id, fname, lname, gender)
Movie (id, name, year, rank*)
Directors (id, fname, lname)
Casts (pid, mid, role)
Movie_Directors (did, mid)
Genre (genre, mid)
* currently unused, always null

7

A simple query

Tell me all you know about every movie
called “Go Tell It On The Mountain”.	

8

A simple query

Tell me about every movie called “Go Tell It
On The Mountain”:

SELECT	
 *	

FROM	
 Movie	
 	

WHERE	
 name	
 =	
 'Go	
 Tell	
 It	
 On	
 The	

Mountain';	

9

A simple query

Tell me about every movie called “Go Tell It
On The Mountain”:

SELECT	
 *  Every column…	

FROM	
 Movie  … of every row in Movie…	

WHERE	
 name	
 =	
 'Go	
 Tell	
 It	
 On	
 The	

Mountain';  … whose “name” field is
this	

10

A simple query

Now tell me only the year each such movie
was made:

SELECT	
 YEAR  only the Year column…	

FROM	
 Movie	

WHERE	
 name	
 =	
 'Go	
 Tell	
 It	
 On	
 The	

Mountain';	

11

More examples

•  Names of all Star Wars movies
•  All Star Wars movies made in 2000 or

later
•  Names and production years of all Star

Wars movies from earliest to latest

“Star Wars movie” = movie with “Star Wars”
in the name

12

Something a little harder…

Who directed The Empire Strikes Back?

13

Answer: joins!

Who directed The Empire Strikes Back?
 Movie (id, name, year, rank)
 Directors (id, fname, lname)
 Movie_Directors (did, mid)

Need to join (combine) the data from these
tables!

14

Director of Empire Strikes Back

15

Director of Empire Strikes Back

SELECT	
 d.id,	
 d.fname,	
 d.lname	

FROM	
 Movie	
 m,	
 Movie_Directors	
 md,	

Directors	
 d	

WHERE	
 m.id	
 =	
 md.mid	
 AND	

	
 md.did	
 =	
 d.id	
 AND	

	
 m.name	
 =	
 'Star	
 Wars:	
 Episode	
 V	
 -­‐	

The	
 Empire	
 Strikes	
 Back';	

16

Director of Empire Strikes Back

SELECT	
 d.id,	
 d.fname,	
 d.lname	

FROM	
 Movie	
 m,	
 Movie_Directors	
 md,	

Directors	
 d	

WHERE	
 m.id	
 =	
 md.mid	
 AND	

	
 md.did	
 =	
 d.id	
 AND	

	
 m.name	
 =	
 'Star	
 Wars:	
 Episode	
 V	
 -­‐	

The	
 Empire	
 Strikes	
 Back';	

Join conditions

17

How do joins work formally?

Recall from discrete math (311 or 321) the
Cartesian product of sets X and Y:
– All ordered pairs (x, y) such that x in X, y in Y

18

How do joins work formally?, cont.

Logically, joins work as follows:
1.  Take Cartesian product of the sets of all rows

in tables being joined
2.  Use the join conditions to filter out only those

tuples that match
In practice: much faster, uses less memory

19

Aggregates

Sometimes we just want summary or
extreme-case data
– All Star Wars movies  number of Star Wars

movies
– Dates of all movies  date of earliest movie

Aggregates

SQL has aggregation operators to help with
this
– count, sum, avg, min, max

Aggregates

Sometimes we just want summary or
extreme-case data
– All Star Wars movies  number of Star Wars

movies
– Dates of all movies  date of earliest movie

Aggregates

Sometimes we just want summary or
extreme-case data
– SELECT * FROM Movie WHERE name

LIKE…  SELECT COUNT(*) FROM
Movie…

– Dates of all movies  date of earliest movie

Aggregates

Sometimes we just want summary or
extreme-case data
– SELECT * FROM Movie WHERE name

LIKE…  SELECT COUNT(*) FROM
Movie…

– SELECT year FROM Movie 
 SELECT MIN(year) FROM Movie

Aggregates and grouping

Aggregates are not so useful by
themselves…

But combined with grouping (lecture 3), they
become very powerful!

Aggregates and grouping

List actors’ first names and their frequencies,
from most to least popular:

SELECT	
 fname,	
 COUNT(*)	
 AS	
 freq	

FROM	
 Actor	

GROUP	
 BY	
 fname  grouping by first name	

ORDER	
 BY	
 freq	
 DESC;	

Project 1

More fun with the IMDB database!
Some queries need more advanced SQL

Posted now, due October 15

This weekend: log in to IISQLSRV!
If you can’t, email me: michaelr@cs

27

