
Introduction to Database Systems
CSE 444

Lecture 17: Database Tuning

Magda Balazinska - CSE 444, Fall 2010 1

Database Tuning Overview

•  The database tuning problem

•  Index selection (discuss in detail)

•  Horizontal/vertical partitioning (see lecture 4)

•  Denormalization (discuss briefly)

2

This material is partially based on the book: “Database Management
Systems” by Ramakrishnan and Gehrke, Ch. 20

Magda Balazinska - CSE 444, Fall 2010

Magda Balazinska - CSE 444, Fall 2010

Levels of Abstraction in a DBMS

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

3

The Database Tuning Problem

•  We are given a workload description
–  List of queries and their frequencies

–  List of updates and their frequencies

–  Performance goals for each type of query

•  Perform physical database design
–  Choice of indexes

–  Tuning the conceptual schema
•  Denormalization, vertical and horizontal partition

–  Query and transaction tuning

4 Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem

•  Given a database schema (tables, attributes)

•  Given a “query workload”:
–  Workload = a set of (query, frequency) pairs

–  The queries may be both SELECT and updates

–  Frequency = either a count, or a percentage

•  Select a set of indexes that optimizes the
workload

5

In general this is a very hard problem

Magda Balazinska - CSE 444, Fall 2010

Index Selection: Which Search Key

•  Make some attribute K a search key if the
WHERE clause contains:
–  An exact match on K

–  A range predicate on K

–  A join on K

6 Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 1

7

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 1

8

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 2

9

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 2

10

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

SELECT *
FROM V
WHERE N>? and N<?

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 3

11

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 3

12

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 4

13

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem 4

14

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

Magda Balazinska - CSE 444, Fall 2010

The Index Selection Problem

•  SQL Server
–  Automatically, thanks to AutoAdmin project

–  Much acclaimed successful research project from
mid 90’s, similar ideas adopted by the other major
vendors

•  PostgreSQL
–  You will do it manually, part of project 3

–  But tuning wizards also exist

15 Magda Balazinska - CSE 444, Fall 2010

Basic Index Selection Guidelines

•  Consider queries in workload in order of importance

•  Consider relations accessed by query
–  No point indexing other relations

•  Look at WHERE clause for possible search key

•  Try to choose indexes that speed-up multiple queries

•  And then consider the following…
Magda Balazinska - CSE 444, Fall 2010 16

Index Selection:
Multi-attribute Keys

Consider creating a multi-attribute key on K1,
K2, … if

•  WHERE clause has matches on K1, K2, …
–  But also consider separate indexes

•  SELECT clause contains only K1, K2, ..
–  A covering index is one that can be used

exclusively to answer a query, e.g. index R(K1,K2)
covers the query:

17

SELECT K2 FROM R WHERE K1=55
Magda Balazinska - CSE 444, Fall 2010

To Cluster or Not

•  Range queries benefit mostly from clustering

•  Covering indexes do not need to be
clustered: they work equally well unclustered

18 Magda Balazinska - CSE 444, Fall 2010

19

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

Magda Balazinska - CSE 444, Fall 2010

Hash Table v.s. B+ tree

•  Rule 1: always use a B+ tree 

•  Rule 2: use a Hash table on K when:
–  There is a very important selection query on

equality (WHERE K=?), and no range queries

–  You know that the optimizer uses a nested loop
join where K is the join attribute of the inner
relation (you will understand that in a few lectures)

20 Magda Balazinska - CSE 444, Fall 2010

Balance Queries v.s. Updates

•  Indexes speed up queries
–  SELECT FROM WHERE

•  But they usually slow down updates:
–  INSERT, DELETE, UPDATE

–  However some updates benefit from indexes

21

UPDATE R
 SET A = 7
 WHERE K=55

Magda Balazinska - CSE 444, Fall 2010

Tools for Index Selection

•  SQL Server 2000 Index Tuning Wizard

•  DB2 Index Advisor

•  How they work:
–  They walk through a large number of

configurations, compute their costs, and choose
the configuration with minimum cost

22 Magda Balazinska - CSE 444, Fall 2010

Tuning the Conceptual Schema

•  Index selection

•  Horizontal/vertical partitioning (see lecture 4)

•  Denormalization

23 Magda Balazinska - CSE 444, Fall 2010

Denormalization

24

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:

How can we speed up this query workload ?

Magda Balazinska - CSE 444, Fall 2010

Denormalization

25

INSERT INTO ProductCompany
 SELECT x.pid, x.pname, x.price, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:

ProductCompany(pid, pname, price, cname, city)

Magda Balazinska - CSE 444, Fall 2010

Denormalization

26

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Next, replace the query

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

Magda Balazinska - CSE 444, Fall 2010

Issues with Denormalization

•  It is no longer in BCNF
–  We have the hidden FD: cid  cname, city

•  When Product or Company are updated, we
need to propagate updates to ProductCompany
–  Use RULE in PostgreSQL (see PostgreSQL doc.)

–  Or use a trigger on a different RDBMS

•  Sometimes cannot modify the query
–  What do we do then ?

27 Magda Balazinska - CSE 444, Fall 2010

Denormalization Using Views

28

INSERT INTO ProductCompany
 SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
 SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Company AS
 SELECT DISTINCT cid, cname, city FROM ProductCompany

