Introduction to Database Systems
CSE 444

Lecture 19: Operator Algorithms

CSE 444 - Summer 2009 1

Why Learn About Op Algos?

* Implemented in commercial DBMSs
— DBMSs implement different subsets of known algorithms

 Good algorithms can greatly improve performance

 Need to know about physical operators to understand
guery optimization

CSE 444 - Summer 2009 2

Cost Parameters

* |n database systems the data is on disk
 Cost =total number of I/Os

e Parameters:
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

« When ais a key, V(R,a) = T(R)

« When a is not a key, V(R,a) can be anything < T(R)
Main constraint: M = # of memory (buffer) pages

CSE 444 - Summer 2009

Cost

e Cost of an operation = number of disk I/Os to
— Read the operands
— Compute the result

e Cost of writing the result to disk is not included
— Need to count it separately when applicable

CSE 444 - Summer 2009 4

Cost of Scanning a Table

 Result may be unsorted: B(R)

* Result needs to be sorted: 3B(R)
— We will discuss sorting later

CSE 444 - Summer 2009

Outline for Today

e Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)
— Two-pass algorithms (Sec 15.4 and 15.5)

— Note about readings:

* In class, we will discuss only algorithms for join operator
(because other operators are easier)

 Read the book to get more details about these algos
 Read the book to learn about algos for other operators

CSE 444 - Summer 2009

Basic Join Algorithms

e Logical operator:
— Product(pname, cname) x Company(cnhame, city)

* Propose three physical operators for the join,
assuming the tables are in main memory:
— Hash join
— Nested loop join
— Sort-merge join

CSE 444 - Summer 2009

Hash Join

Hash join: R > S

e Scan R, build buckets in main memory
 Then scan S and join

e Cost: B(R) + B(S)

* One-pass algorithm when B(R) <=M
— By “one pass”, we mean that the operator reads its
operands only once. It does not write intermediate

results back to disk.
CSE 444 - Summer 2009 8

Hash Join Example

Patient(pid, name, address)
nsurance(pid, provider, policy nb)
Patient < Insurance

Two tuples
per page

Patient Insurance
1| ‘Bob’ | ‘Seattle’ 2 | ‘Blue’ 123
2 | ‘Ela’ | ‘Everett’ 4 | ‘Prem’ | 432
3| ‘Jill’ ‘Kent’ 4 | ‘Prem’ | 343
41 ‘Joe’ | ‘Seattle’ 3| ‘GrpH’ | 554 5

Hash Join Example

Patient < Insurance
Memory M = 21 pages

Showing

1|2 214|166

4|3
218
819

Hash Join Example

Step 1. Scan Patient and create hash table in memory
Memory M = 21 pages

Hash h: pid % 5

S 1162 31849

Disk > §
\ //
Patient Insurance
1|2 2141166 Input buffer
314 413|113
916 218
8|5 819 11

\ /

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages

Hash h: pid % 5
9 1161 2 38|49
< Disk)
Patient Insurance 214 5] 2
1|2 2141166 Input buffer Output buffer
3/4] [4|3]]1]3
8|5 819 12

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages

Hash h: pid % 5
9 1161 2 38|49
< Disk)
Patient Insurance 214 al 4
1|2 2141166 Input buffer Output buffer
3/4] [4|3]]1]3
96 28
8195 8|9 13

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages

Hash h: pid % 5
S 16| 2 3849
< Disk)
Patient Insurance 4|3 Ny
1|2 2141166 Input buffer Output buffer
34 41311113 Keep going until read all of Insurance
96 218
3|5 3| g Cost: B(R) + B(S) "

Hash Join Detalls

Open() {
H = newHashTable();

S.Open();
X = S.GetNext();
while (x = null) {

H.insert(x); x = S.GetNext();

}
S.Close();

R.Open();
buffer =[],

15

Hash Join Detalls

GetNext() {
while (buffer ==1[]) {
X = R.GetNext();
If (x==Null) return NULL;
buffer = H.find(x);
}
z = buffer.first();

buffer = buffer.rest();
return z;

}

16

Hash Join Detalls

Close() {
release memory (H, buffer, etc.);
R.Close()

}

CSE 444 - Summer 2009

17

Nested Loop Joins

Tuple-based nested loop R < S
R Is the outer relation, S iIs the inner relation

for each tuple rin R do
for each tuple sin S do
if r and s join then output (r,s)

Cost: B(R) + T(R) B(S)
Not quite one-pass since S Is read many times

CSE 444 - Summer 2009 18

Page-at-a-time Refinement

for each page of tuplesrin R do
for each page of tuples sin S do
for all pairs of tuples
if r and s join then output (r,s)

e Cost: B(R) + B(R)B(S)

CSE 444 - Summer 2009

19

\
Patient Insurance

Nested Loop Example

Disk >

2/4|/|6|6

1|3

0 | |© | |W

g1~

Input buffer for Patient

Input buffer for Insurance

2|2
Output buffer

4|3
218
819

20

\
Patient Insurance

Nested Loop Example

Disk >

2/4|/|6|6

1|3

0 | |© | |W

g1~

Input buffer for Patient

Input buffer for Insurance

Output buffer

4|3
218
819

21

Nested Loop Example

Disk >
\ //

Patient Insurance
112 21411616

1|3

0 | |© | |W
g1~

1 | 2 | Input buffer for Patient

2 | 8 | Input buffer for Insurance

Keep going until read
all of Insurance

2|2
Output buffer

Then repeat for next
page of Patient... until end of Patient

4|3
218
819

Cost: B(R) + B(R)B(S)

22

Sort-Merge Join

Sort-merge join: R x S

Scan R and sort in main memory
Scan S and sort in main memory
Merge R and S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

CSE 444 - Summer 2009

23

Sort-Merge Join Example

Step 1. Scan Patient and sort in memory
Memory M = 21 pages

1

2

3

4

S

6

Disk >
\ //
Patient Insurance
112 21411616
314 413|113
916 218
8|5 819
\ /

24

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

112][3]4][5]6]8

S ——— |[1]2]/2]3][3]4]/4

~— -

Patient Insurance o]l
112] [2]4][e6]6

314/ |[4]3]]|1]3

96| [2]8

85| |8]9

\ /

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

1(2(|3/4|5|6 9
11223 416
68|89
1|1
Output buffer

Disk >
\ //
Patient Insurance
112 21411616
314 413|113
916 218
8|5 819
\ /

26

Step 3: Merge Patient and Insurance

\
Patient Insurance

Sort-Merge Join Example

Disk)

0 | |© | |W

g1~

2141166
1|3

Memory M = 21 pages

1(2(|3/4|5|6 9
11223 416
68|89
2|2
Output buffer

Keep going until end of first relation

4|3
218
819

27

Outline for Today

e Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)
— Two-pass algorithms (Sec 15.4 and 15.5)

CSE 444 - Summer 2009

28

Review: Access Methods

 Heap file
— Scan tuples one at the time
« Hash-based index

— Efficient selection on equality predicates
— Can also scan data entries in index

e Tree-based index
— Efficient selection on equality or range predicates
— Can also scan data entries in index

CSE 444 - Summer 2009

29

Index Based Selection
Selection on equality: 6, (R)
V(R, a) = # of distinct values of attribute a

Clustered index on a: cost B(R)/V(R,a)
Unclustered index on a: cost T(R)/V(R,a)

Note: we ignored I/O cost for index pages

CSE 444 - Summer 2009

30

Index Based Selection

B(R) = 2000 —
Example: T(R) = 100,000 cost of Ga:V(R) =7

V(R,a) =20
Table scan: B(R) = 2,000 I/Os

Index based selection

— If index is clustered: B(R)/V(R,a) = 100 I/Os

— If index is unclustered: T(R)/V(R,a) = 5,000 I/Os
Lesson

— Don’t build unclustered indexes when V(R,a) is small !

CSE 444 - Summer 2009 31

Index Nested Loop Join

RxS
« Assume S has an index on the join attribute

 |terate over R, for each tuple fetch
corresponding tuple(s) from S

e Cost:
— If index on S is clustered: B(R) + T(R)B(S) / V(S,a)
— If index on S is unclustered: B(R) + T(R)T(S) / V(S,a)

CSE 444 - Summer 2009 32

Outline for Today

e Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)
— Two-pass algorithms (Sec 15.4 and 15.5)

CSE 444 - Summer 2009

33

Two-Pass Algorithms

 What If data does not fit iIn memory?
 Need to process it in multiple passes

 Two key techniques
— Hashing
— Sorting

CSE 444 - Summer 2009

34

Two Pass Algorithms
Based on Hashing

e |dea: partition a relation R into buckets, on disk
 Each bucket has size approx. B(R)/M

Relation R
OUTPUT Partitions
e 1 S—
1
1
INPUT Z
2 hash 2
> function o0 g e
h M-1
B(R) M-1
N~ N~
Disk M main memory buffers Disk

 Does each bucket fit in main memory ?
—Yes if B(R)/M <=M, i.e. B(R) <= M?2

CSE 444 - Summer 2009 35

Partitioned (Grace) Hash Join

RxS

o Step 1.
— Hash S into M-1 buckets
— Send all buckets to disk

o Step 2
— Hash R into M-1 buckets
— Send all buckets to disk

e Step 3
— Join every pair of buckets

CSE 444 - Summer 2009

36

Partitioned Hash Join

nartition 1.

Original
Relation
>

INPUT

.
>

h
fu nacgcpon

h

OUTPUT
1

Partition both relations using hash fn h
R tuples in partition 1 will only match S tuples in

Partitions
e

2

00 ¢

M-1

B main memory buffers

CSE 444 - Summer 2009

Disk

M-1

37

Partitioned Hash Join

 Read in partition of R, hash it using h2 (= h)

— Build phase

e Scan matching partition of S, search for matches

— Probe phase prtitions

Join Result

>

of R&S —
— Hash table for partition
hash Si (< M-1 pages)
fn
h2 S o 0 0
e
Input buffer Output
for Ri buffer
N~ -
Disk B main memory buffers

CSE 444 - Summer 2009

Y

N~
Disk

38

Partitioned Hash Join

e Cost: 3B(R) + 3B(S)
o Assumption: min(B(R), B(S)) <= M?

CSE 444 - Summer 2009

39

External Sorting

 Problem: Sort a file of size B with memory M

 Where we need this:
— ORDER BY in SQL queries
— Several physical operators
— Bulk loading of B+-tree indexes.

e Sorting is two-pass when B < M?

CSE 444 - Summer 2009

40

External Merge-Sort: Step 1

 Phase one: load M pages in memory, sort

| M—~—___| Size M pages

Main memory ‘

Disk

External Merge-Sort: Step 2

« Merge M — 1 runs into a new run
e Result: runs of length M (M — 1)~ M?

Disk

_S|Input 1
Tllnput 2
| Input M

Main memory

Y

Output

CSE 444 - Summer 2009

If B <= M2 then we are done

42

External Merge-Sort

e Cost:
— Read+writet+read = 3B(R)
— Assumption: B(R) <= M?

e Other considerations
— In general, a lot of optimizations are possible

CSE 444 - Summer 2009

43

Two-Pass Join Algorithm
Based on Sorting

JOINR X S

e Step 1: sort both R and S on the join attribute:
— Cost: 4B(R)+4B(S) (because need to write to disk)

e Step 2: Read both relations in sorted order,
match tuples
— Cost: B(R)+B(S)

e Total cost: 5B(R)+5B(S)

« Assumption: B(R) <= M?, B(S) <= M?

CSE 444 - Summer 2009 44

Two-Pass Join Algorithm
Based on Sorting

JoInR 4 S
o If B(R) + B(S) <= M?
— Or if use a priority queue to create runs of length 2|M|

 If the number of tuples in R matching those in S is
small (or vice versa)

 We can compute the join during the merge phase

e Total cost: 3B(R)+3B(S)

CSE 444 - Summer 2009 45

Summary of Join Algorithms

Nested Loop Join: B(R) + B(R)B(S)

— Assuming page-at-a-time refinement

Hash Join: 3B(R) + 3B(S)

— Assuming: min(B(R), B(S)) <= M?

Sort-Merge Join: 3B(R)+3B(S)

— Assuming B(R)+B(S) <= M?

Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
— Assuming S has clustered index on a

CSE 444 - Summer 2009 46

Summary of Query Execution

* For each logical query plan
— There exist many physical query plans
— Each plan has a different cost
— Cost depends on the data

« Additionally, for each query
— There exist several logical plans

* Next lecture: query optimization
— How to compute the cost of a complete plan?
— How to pick a good query plan for a query?

CSE 444 - Summer 2009

47

