
Introduction to Database Systems
CSE 444

Lecture 16: Database Tuning

CSE 444 - Summer 2009 1

About the Midterm

• Open book and open notes
– But you won’t have time to read during midterm!
– No laptops, no mobile devices

• Three questions:
1. SQL
2. ER Diagrams
3. Transactions

CSE 444 - Summer 2009 2

More About the Midterm

• Review Lectures 1 through 14
– Read the lecture notes carefully
– Read the book for extra details, extra explanations

• Review Project 1 (Project 2 not on any exam)
• Review HW1 and HW2

• Take a look at sample midtermsp

CSE 444 - Summer 2009 3

Where We Are?

• We just started to learn how a DBMS
executes a query…

• … we started with data storage and indexing

CSE 444 - Summer 2009 4

Data Storage & Indexing: Review

How does a DBMS store data?
– Typically one relation = one file
– Heap file: tuples inside file are not sorted
– Sequential file: tuples sorted on a key

Heap File

Student(sid: int, age: int, …)

Sequential file sorted on sid

30

20

40

1 record 10

20

30

5

40

10
1 page

30

40

Indexes: Motivation

• Index: data structure to speed-up selections
on search key fields for the index

• An index contains a collection of data
entries, and supports efficient retrieval of all
data entries with a given search key value k

CSE 444 - Summer 2009 6

I dIndexes
• Search key = can be any set of fields• Search key = can be any set of fields

– not the same as the primary key, nor a key
• Index = collection of data entries• Index = collection of data entries
• Data entry for key k can be:

– The actual record with key kThe actual record with key k
• In this case, the index is also a special file organization

– (k, RID)
• K is the key
• RID (Record ID) is a pointer to the record inside the data file

CSE 444 - Summer 2009 7

Hash-Based Index Example
Index File Hash function h1

10 21

20 20 h1(sid) = 00

Example hash-based index
on sid (student id)

Index File Hash function h1

30 18

40 19

H1 sid

This is a primary index
because it determines the location
of indexed records

50 22

60 18

H1

h1(sid) = 11

sid
In this case, data entries in the index
are actual data records
There is no separate data file 70 21

80 19

()There is no separate data file

This index is also clustered

CSE 444 - Summer 2009 8

Hash-Based Index Example 2
Data FileIndex File

18

18

10 21

20 20

h2(age) = 00

Data FileIndex File

20

22

19

30 18

40 19

H2age

h2(age) = 01
21

21

19

50 22

60 18

h2(age) = 01

70 21

80 19Secondary index
Data entries in index are (key,RID) pairs

CSE 444 - Summer 2009 9Unclustered index

Tree-Based Indexes

D t t i
B+ Tree B+ Tree

Data entries
(Index File)
(Data file)

Data entries

(Data file)

Data Records Data Records

CLUSTERED UNCLUSTERED

Data entries in index can also be data records

10CSE 444 - Summer 2009

Data entries in index can also be data records

Database Tuning Overview

• The database tuning problem
• Index selection (discuss in detail)()
• Horizontal/vertical partitioning (see lecture 4)
• Denormalization (discuss briefly)(y)

This material is partially based on the book: “Database Management
Systems” by Ramakrishnan and Gehrke, Ch. 20

11CSE 444 - Summer 2009

Levels of Abstraction in a DBMS

External Schema External Schema External Schema

Conceptual Schema a.k.a logical schema
describes stored dataviews

Physical Schema
in terms of data modelaccess control

Disk

includes storage details
file organization
indexes

CSE 444 - Summer 2009

indexes
12

The Database Tuning Problem

• We are given a workload description
– List of queries and their frequencies
– List of updates and their frequencies
– Performance goals for each type of query

• Perform physical database design
– Choice of indexes

T i th t l h– Tuning the conceptual schema
• Denormalization, vertical and horizontal partition

– Query and transaction tuningQuery and transaction tuning

13CSE 444 - Summer 2009

The Index Selection Problem

• Given a database schema (tables, attributes)
• Given a “query workload”:q y

– Workload = a set of (query, frequency) pairs
– The queries may be both SELECT and updates
– Frequency = either a count, or a percentage

• Select a set of indexes that optimizes the
kl dworkload

In general this is a very hard problem
14

In general this is a very hard problem
CSE 444 - Summer 2009

Index Selection: Which Search Key

• Make some attribute K a search key if the
WHERE clause contains:
– An exact match on K
– A range predicate on K

A j i K– A join on K

15CSE 444 - Summer 2009

The Index Selection Problem 1

V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 100 queries:
Your workload is this

SELECT
FROM V
WHERE N=?

SELECT
FROM V
WHERE P=?

What indexes ?

16CSE 444 - Summer 2009

The Index Selection Problem 1

V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 100 queries:
Your workload is this

SELECT
FROM V
WHERE N=?

SELECT
FROM V
WHERE P=?

A: V(N) and V(P) (hash tables or B-trees)

17

() () ()

CSE 444 - Summer 2009

The Index Selection Problem 2
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 100 queries:

INSERT INTO V

100000 queries:

SELECT
FROM V
WHERE N>? and N<?

SELECT
FROM V
WHERE P=?

INSERT INTO V
VALUES (?, ?, ?)

What indexes ?

18CSE 444 - Summer 2009

The Index Selection Problem 2
V(M N P)V(M, N, P);

Your workload is this

SELECT *

100000 queries: 100 queries:
Your workload is this

INSERT INTO V

100000 queries:

SELECT * SELECT
FROM V
WHERE P=?

INSERT INTO V
VALUES (?, ?, ?)

SELECT
FROM V
WHERE N>? and N<?

A: definitely V(N) (must B-tree); unsure about V(P)

19

y () (); ()

CSE 444 - Summer 2009

The Index Selection Problem 3
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V

100000 queries:

SELECT
FROM V
WHERE N=?

SELECT
FROM V
WHERE N=? and P>?

INSERT INTO V
VALUES (?, ?, ?)

What indexes ?

20CSE 444 - Summer 2009

The Index Selection Problem 3
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V

100000 queries:

SELECT
FROM V
WHERE N=?

SELECT
FROM V
WHERE N=? and P>?

INSERT INTO V
VALUES (?, ?, ?)

A: V(N, P)

21CSE 444 - Summer 2009

The Index Selection Problem 4
V(M N P)V(M, N, P);

Your workload is this

SELECT *

1000 queries: 100000 queries:
Your workload is this

SELECT * SELECT *
FROM V
WHERE P>? and P<?

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?
22

What indexes ?
CSE 444 - Summer 2009

The Index Selection Problem 4
V(M N P)V(M, N, P);

Your workload is this

SELECT *

1000 queries: 100000 queries:
Your workload is this

SELECT * SELECT *
FROM V
WHERE P>? and P<?

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

23

() y, () p y

CSE 444 - Summer 2009

The Index Selection Problem

• SQL Server
– Automatically, thanks to AutoAdmin project
– Much acclaimed successful research project from

mid 90’s, similar ideas adopted by the other major
vendorsvendors

• PostgreSQL• PostgreSQL
– You will do it manually, part of project 3
– But tuning wizards also existBut tuning wizards also exist

24CSE 444 - Summer 2009

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

• And then consider the following…
25

Index Selection:Index Selection:
Multi-attribute Keys

Consider creating a multi-attribute key on K1,
K2, … if

• WHERE clause has matches on K1, K2, …
– But also consider separate indexes

• SELECT clause contains only K1, K2, ..
– A covering index is one that can be used

l i l t i d R(K1 K2)exclusively to answer a query, e.g. index R(K1,K2)
covers the query:

SELECT K2 FROM R WHERE K1=55
26

SELECT K2 FROM R WHERE K1=55
CSE 444 - Summer 2009

To Cluster or Not

• Range queries benefit mostly from clustering
• Covering indexes do not need to be g

clustered: they work equally well unclustered

27CSE 444 - Summer 2009

SELECT *
FROM R
WHERE K>? and K<?

Cost Sequential scan

P t t l t i d
0 100

28

Percentage tuples retrieved
CSE 444 - Summer 2009

Hash Table v.s. B+ tree

• Rule 1: always use a B+ tree ☺

• Rule 2: use a Hash table on K when:
– There is a very important selection query on

equality (WHERE K=?), and no range queries
– You know that the optimizer uses a nested loop

join where K is the join attribute of the innerjoin where K is the join attribute of the inner
relation (you will understand that in a few lectures)

29CSE 444 - Summer 2009

Balance Queries v.s. Updates

• Indexes speed up queries
– SELECT FROM WHERE

• But they usually slow down updates:
– INSERT, DELETE, UPDATE
– However some updates benefit from indexes

UPDATE RUPDATE R
SET A = 7
WHERE K=55

30CSE 444 - Summer 2009

Tools for Index Selection

• SQL Server 2000 Index Tuning Wizard
• DB2 Index Advisor

• How they work:y
– They walk through a large number of

configurations, compute their costs, and choose
th fi ti ith i i tthe configuration with minimum cost

31CSE 444 - Summer 2009

Tuning the Conceptual Schema

• Index selection

• Horizontal/vertical partitioning (see lecture 4)

• Denormalization

32CSE 444 - Summer 2009

Denormalization

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:
SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?y p y y

How can we speed up this query workload ?

33CSE 444 - Summer 2009

Denormalization

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:

INSERT INTO ProductCompany
SELECT x pid x pname x price y cname y city

ProductCompany(pid, pname, price, cname, city)

SELECT x.pid, x.pname, x.price, y.cname, y.city
FROM Product x, Company y
WHERE x.cid = y.cid

34CSE 444 - Summer 2009

Denormalization

SELECT id

Next, replace the query

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

35

WHERE price < ? and city = ?

CSE 444 - Summer 2009

Issues with Denormalization

• It is no longer in BCNF
– We have the hidden FD: cid Æ cname, city

• When Product or Company are updated, we
need to propagate updates to ProductCompany
– Use RULE in PostgreSQL (see PostgreSQL doc.)
– Or use a trigger on a different RDBMS

S ti t dif th• Sometimes cannot modify the query
– What do we do then ?

36CSE 444 - Summer 2009

Denormalization Using Views

INSERT INTO ProductCompany
SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
FROM Product x Company yFROM Product x, Company y
WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Company AS
37

CREATE VIEW Company AS
SELECT DISTINCT cid, cname, city FROM ProductCompany

