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About the Midterm

• Open book and open notes 
– But you won’t have time to read during midterm!
– No laptops, no mobile devices

• Three questions:
1. SQL
2. ER Diagrams
3. Transactions
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More About the Midterm

• Review Lectures 1 through 14 
– Read the lecture notes carefully
– Read the book for extra details, extra explanations

• Review Project 1 (Project 2 not on any exam)
• Review HW1 and HW2

• Take a look at sample midtermsp
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Where We Are?

• We just started to learn how a DBMS 
executes a query…

• … we started with data storage and indexing
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Data Storage & Indexing: Review

How does a DBMS store data?
– Typically one relation = one file
– Heap file: tuples inside file are not sorted
– Sequential file: tuples sorted on a key

Heap File

Student(sid: int, age: int, …)

Sequential file sorted on sid
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Indexes: Motivation

• Index: data structure to speed-up selections 
on search key fields for the index

• An index contains a collection of data 
entries, and supports efficient retrieval of all 
data entries with a given search key value k
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I dIndexes
• Search key = can be any set of fields• Search key = can be any set of fields

– not the same as the primary key, nor a key
• Index = collection of data entries• Index = collection of data entries
• Data entry for key k can be:

– The actual record with key kThe actual record with key k
• In this case, the index is also a special file organization

– (k, RID) 
• K is the key
• RID (Record ID) is a pointer to the record inside the data file
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Hash-Based Index Example
Index File Hash function h1

10 21

20 20 h1(sid) = 00

Example hash-based index
on sid (student id)

Index File Hash function h1

30 18

40 19

H1 sid

This is a primary index 
because it determines the location 
of indexed records

50 22

60 18

H1

h1(sid) = 11

sid
In this case, data entries in the index
are actual data records
There is no separate data file 70 21

80 19

( )There is no separate data file 

This index is also clustered

CSE 444 - Summer 2009 8



Hash-Based Index Example 2
Data FileIndex File

18

18

10 21

20 20

h2(age) = 00

Data FileIndex File

20

22

19

30 18

40 19

H2age

h2(age) = 01
21

21

19

50 22

60 18

h2(age) = 01

70 21

80 19Secondary index
Data entries in index are (key,RID) pairs
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Tree-Based Indexes

D t t i
B+ Tree B+ Tree

Data entries
(Index File)
(Data file)

Data entries

(Data file)

Data Records Data Records

CLUSTERED UNCLUSTERED

Data entries in index can also be data records
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Database Tuning Overview

• The database tuning problem
• Index selection (discuss in detail)( )
• Horizontal/vertical partitioning (see lecture 4)
• Denormalization (discuss briefly)( y)

This material is partially based on the book: “Database Management 
Systems” by Ramakrishnan and Gehrke, Ch. 20
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Levels of Abstraction in a DBMS

External Schema External Schema External Schema

Conceptual Schema a.k.a logical schema
describes stored dataviews

Physical Schema
in terms of data modelaccess control

Disk

includes storage details
file organization
indexes
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The Database Tuning Problem

• We are given a workload description
– List of queries and their frequencies
– List of updates and their frequencies
– Performance goals for each type of query

• Perform physical database design
– Choice of indexes

T i th t l h– Tuning the conceptual schema
• Denormalization, vertical and horizontal partition

– Query and transaction tuningQuery and transaction tuning
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The Index Selection Problem

• Given a database schema (tables, attributes)
• Given a “query workload”:q y

– Workload = a set of (query, frequency) pairs
– The queries may be both SELECT and updates
– Frequency = either a count, or a percentage

• Select a set of indexes that optimizes the 
kl dworkload

In general this is a very hard problem
14

In general this is a very hard problem
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Index Selection: Which Search Key

• Make some attribute K a search key if the 
WHERE clause contains:
– An exact match on K
– A range predicate on K

A j i K– A join on K
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The Index Selection Problem 1

V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 100 queries:
Your workload is this

SELECT  
FROM V
WHERE N=?

SELECT  
FROM V
WHERE P=?

What indexes ?
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The Index Selection Problem 1

V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 100 queries:
Your workload is this

SELECT  
FROM V
WHERE N=?

SELECT  
FROM V
WHERE P=?

A:  V(N) and V(P) (hash tables or B-trees)
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The Index Selection Problem 2
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 100 queries:

INSERT INTO V

100000 queries:

SELECT  
FROM V
WHERE N>? and N<?

SELECT  
FROM V
WHERE P=?

INSERT INTO V
VALUES (?, ?, ?)

What indexes ?
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The Index Selection Problem 2
V(M N P)V(M, N, P);

Your workload is this

SELECT *

100000 queries: 100 queries:
Your workload is this

INSERT INTO V

100000 queries:

SELECT * SELECT  
FROM V
WHERE P=?

INSERT INTO V
VALUES (?, ?, ?)

SELECT  
FROM V
WHERE N>? and N<?

A:  definitely V(N) (must B-tree); unsure about  V(P)
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The Index Selection Problem 3
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V

100000 queries:

SELECT  
FROM V
WHERE N=?

SELECT  
FROM V
WHERE N=? and P>?

INSERT INTO V
VALUES (?, ?, ?)

What indexes ?
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The Index Selection Problem 3
V(M N P)V(M, N, P);

Your workload is this

SELECT * SELECT *

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V

100000 queries:

SELECT  
FROM V
WHERE N=?

SELECT  
FROM V
WHERE N=? and P>?

INSERT INTO V
VALUES (?, ?, ?)

A:  V(N, P)
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The Index Selection Problem 4
V(M N P)V(M, N, P);

Your workload is this

SELECT *

1000 queries: 100000 queries:
Your workload is this

SELECT * SELECT * 
FROM V
WHERE P>? and P<?

SELECT * 
FROM V
WHERE N>? and N<?

What indexes ?
22

What indexes ?
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The Index Selection Problem 4
V(M N P)V(M, N, P);

Your workload is this

SELECT *

1000 queries: 100000 queries:
Your workload is this

SELECT * SELECT * 
FROM V
WHERE P>? and P<?

SELECT * 
FROM V
WHERE N>? and N<?

A: V(N) secondary,   V(P) primary index
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The Index Selection Problem

• SQL Server
– Automatically, thanks to AutoAdmin project
– Much acclaimed successful research project from 

mid 90’s, similar ideas adopted by the other major 
vendorsvendors

• PostgreSQL• PostgreSQL
– You will do it manually, part of project 3
– But tuning wizards also existBut tuning wizards also exist
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Basic Index Selection Guidelines

• Consider queries in workload in order of importance

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

• And then consider the following…
25



Index Selection:Index Selection: 
Multi-attribute Keys

Consider creating a multi-attribute key on K1, 
K2, … if

• WHERE clause has matches on K1, K2, …
– But also consider separate indexes

• SELECT clause contains only K1, K2, ..
– A covering index is one that can be used 

l i l t i d R(K1 K2)exclusively to answer a query, e.g. index R(K1,K2) 
covers the query:

SELECT K2 FROM R WHERE K1=55
26

SELECT K2 FROM R WHERE K1=55
CSE 444 - Summer 2009



To Cluster or Not

• Range queries benefit mostly from clustering
• Covering indexes do not need to be g

clustered: they work equally well unclustered
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SELECT *
FROM R
WHERE K>? and K<?

Cost Sequential scan

P t t l t i d
0 100

28

Percentage tuples retrieved
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Hash Table v.s. B+ tree

• Rule 1: always use a B+ tree  ☺

• Rule 2: use a Hash table on K when:
– There is a very important selection query on 

equality (WHERE K=?), and no range queries
– You know that the optimizer uses a nested loop 

join where K is the join attribute of the innerjoin where K is the join attribute of the inner 
relation (you will understand that in a few lectures)
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Balance Queries v.s. Updates

• Indexes speed up queries
– SELECT FROM WHERE

• But they usually slow down updates:
– INSERT, DELETE, UPDATE
– However some updates benefit from indexes

UPDATE RUPDATE R
SET A = 7
WHERE K=55
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Tools for Index Selection

• SQL Server 2000 Index Tuning Wizard
• DB2 Index Advisor

• How they work:y
– They walk through a large number of 

configurations, compute their costs, and choose 
th fi ti ith i i tthe configuration with minimum cost
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Tuning the Conceptual Schema

• Index selection

• Horizontal/vertical partitioning (see lecture 4)

• Denormalization
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Denormalization

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:
SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?y p y y

How can we speed up this query workload ?
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Denormalization

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:

INSERT INTO ProductCompany
SELECT x pid x pname x price y cname y city

ProductCompany(pid, pname, price, cname, city)

SELECT x.pid, x.pname, x.price, y.cname, y.city
FROM Product x, Company y
WHERE x.cid = y.cid
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Denormalization

SELECT id

Next, replace the query

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

35

WHERE price < ? and city = ?
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Issues with Denormalization

• It is no longer in BCNF
– We have the hidden FD:  cid Æ cname, city

• When Product or Company are updated, we 
need to propagate updates to ProductCompany
– Use RULE in PostgreSQL (see PostgreSQL doc.)
– Or use a trigger on a different RDBMS

S ti t dif th• Sometimes cannot modify the query
– What do we do then ?
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Denormalization Using Views

INSERT INTO ProductCompany
SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
FROM Product x Company yFROM Product x, Company y
WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Company AS
37

CREATE VIEW Company AS
SELECT DISTINCT cid, cname, city FROM ProductCompany


