Question 1. SQL (24 points, 8 each part) The Wrecks ‘R Us Auto Repair Shoppe has a database to keep
track of cars, repair orders, and repair technicians. The database has the following tables:

CAR(vin, make, model, year) -- car vehicle ID #, manufacturer, model, and year; for example:
(17234, Toyota, Prius, 2008) or (38953, Chevy, Nova, 1968)

TECHNICIAN(techid, name, yearhired) -- technician ID number, name, and year hired

CANFIX(techid, make, model) -- table listing the car makes and models that a technician can fix

ORDER(num, vin, techid, year, month, day) -- repair order #, car ID, technician ID, and date

In these relations, vin is a foreign key in ORDER referring to the CAR relation, and techid is a foreign key
in the CANFIX and ORDER relations referring to the TECHNICIAN relation. The keys in each relation are
underlined.

(a) Write a SQL query that produces a list of the names of all technicians who repaired a Toyota car (i.e.,
make = ‘Toyota’) in the year 2004. The list should be sorted by technician name and should not contain
duplicates.

SELECT DISTINCT t.name

FROM technician t, order r, car c

WHERE c.make = ‘Toyota’ and c.vin =r.vin and r.year = 2004 and r.techid = t.techid
ORDER BY t.name

Several people used GROUP BY, which also works, but the ORDER BY clause is still needed and must
follow GROUP BY.

SELECT t.name

FROM technician t, order r, car ¢

WHERE c.make = ‘Toyota’ and c.vin =r.vin and r.year = 2004 and r.techid = t.techid
GROUP BY t.name

ORDER BY t.name

(continued next page)

CSE 444 Midterm, July 29, 2009 Sample Solution Page 1 of 8

Question 1. (cont) Schemas repeated for convenience:

CAR(vin, make, model, year) -- car vehicle ID #, manufacturer, model, and year
TECHNICIAN(techid, name, yearhired) -- technician ID number, name, and year hired
CANFIX(techid, make, model) -- table listing the car makes and models that a technician can fix

ORDER(num, vin, techid, year, month, day) -- repair order #, car ID, technician ID, and date

(b) Write a SQL query that reports the car make and model that accounts for the most repair orders in
the database. If two or more car make/model pairs are tied for the maximum, your query can list any
one of them or all of them, at your discretion.

SELECT make, model

FROM car c, orderr

WHERE c.vin =r.vin

GROUP BY make, model

HAVING count (*) >= ALL (
SELECT count(*)
FROM car c2, order r2
WHERE c2.vin = r2.vin
GROUP BY make, model

)

Solutions that used SQL Server’s top function or the limit clause in postgres or mysql also received
credit.

(c) Write a SQL query that lists the names of all technicians who were hired before 2005 and can fix a
Ford Mustang (i.e., make is ‘Ford’ and model is ‘Mustang’).

SELECT t.name

FROM canfix f, technician t

WHERE t.techid = f.techid and f.make = ‘Ford’ and f.model = ‘Mustang’
and t.yearhired < 2005

CSE 444 Midterm, July 29, 2009 Sample Solution Page 2 of 8

Question 2. Conceptual design (20 points) We would like to design a database to keep track of students
who participate in intramural sports.

(a) Give an E/R diagram that captures the following entities and relationships:

Entities:
e Student(name, id#)
e Sport (name)
e Team(name, sport)

Relationships:
e Each Team has team members, who are Students, and a single manager, who is also a Student
e Each Sport has one or more Teams
e Each Team belongs to exactly one Sport
e A Student can be a member of any number of teams and can manage any number of teams,
including teams that he/she is a member of.

yd

Student

manager @

Team

A 4

Sport

Grading notes: Another way to diagram this would be to use is-a relations to define two subclasses of
students: team members and managers. We gave full credit if this was done well, although most
people had a simpler solution like the one above.

In a couple of places it would make sense to use a rounded arrow to indicate “exactly one” instead of
a regular arrow to indicate many-to-one. We allowed either, since both captured the intended many-
to-one semantics, which was the major point, and was adequate for the exam.

(continued next page)

CSE 444 Midterm, July 29, 2009 Sample Solution Page 3 of 8

Question 2 (cont.) (b) Give a relational schema that captures your E/R diagram from part (a). You
should give the table and attribute names and clearly indicate which attributes are keys and foreign keys
in the various tables. You do not need to give SQL CREATE TABLE statements for your tables.

As in the homework, R.x indicates that attribute x is a foreign key in relation R. Primary keys are
underlined.

Student(id, name)

Team(name, Student.id, Sport.name) -- manager and plays relations folded into this table
Sport(name)

Member(Student.id, Team.name)

Some answers used both the team and sport names as keys for the Team relation, which would allow
the same name to be used for teams in different sports. That received full credit if it was done
properly. In areal situation we would go back to the client and ask whether team names were
intended to be unique across all sports.

CSE 444 Midterm, July 29, 2009 Sample Solution Page 4 of 8

Question 3. BCNF (20 points) As they do every four years, this summer Seattle Opera is presenting
Wagner’s Der Ring des Nibelungen. This 4-opera mini-series has a huge cast, and one of the major
donors to the company would like a database to keep track of the characters. One of the summer
interns was given the job and produced a table named RING. It lists the characters and information
about them, such as their voice part, what they have power over (fire, love, the magic sword, etc.), the
name of their residence, and its address.

RING

Character | Voice Power Residence Address

Wotan Baritone | Light Valhalla Rainbow Bridge
Wotan Baritone | Air Valhalla Rainbow Bridge
Erda Alto Wisdom | Middle of Universe | Fremont

Erda Alto Fate Middle of Universe | Fremont
Siegfried Tenor Sword Forest Hurricane Ridge
Brunnhilde | Soprano | Horse Rock Enchanted Fire Ring
Freia Soprano | Love Valhalla Rainbow Bridge
Loge Tenor Fire Valhalla Rainbow Bridge
Hagen Bass Drink Hut Seward Park
Getrune Soprano | Drink House Wallingford

(a) This table is not in BCNF. Based only on the data given above, identify the functional dependencies
that violate BCNF.

The problematic FDs are:

Character — Voice, Residence, Address
Residence — Address
Address — Residence

There are some others that turned up in some of the answers such as Power, Residence — Voice or
Voice, Residence — Character, which were accidents in the data that we missed while proofreading
the question. We graded answers that picked up on these accordingly, but the above FDs were
sufficient and are the ones that make the most sense in this application (although we didn’t expect
people to analyze the significance of the data during the test).

Several answers included the notation Residence <> Address. We gave credit for this since it was
reasonably clear what was meant, but a double-arrow is not standard notation for FDs.

(continued next page)

CSE 444 Midterm, July 29, 2009 Sample Solution Page 5 of 8

Question 3 (cont.) (b) Using the functional dependencies you identified in part (a), decompose the
table into BCNF. Be sure to indicate which attributes are the key(s) of the various relations, and be sure
to indicate any foreign key relationships between the tables.

Be sure to show the steps in your decomposition — don’t just show the final result. You should also
clearly show which functional dependencies you are using at each step in your decomposition, and you
should underline the keys in each table so that we can follow your work and evaluate it carefully.

Hint: there may be more than one correct solution to the problem.
The schema of the original table is repeated here to get you started:
RING(Character, Voice, Power, Residence, Address)

There are several possible first steps depending on which FD we pick. We'll use the FD
Character — Voice, Residence, Address to get:

T1(Character, Voice, Residence, Address)
T2(Character, Power)

T2 is in BCNF because any two-attribute relation is in BCNF. T1 still has the two bad dependencies
Residence — Address and Address — Residence. We can use either one to decompose T1; we’ll pick
the first one to get

T11(Character, Voice, Residence)
T12(Residence, Address)

where Residence in T11 is a foreign key referring to Residence in T12.

(c) For 1 point of extra credit, and only if you have time left at the end of the exam, what is the name of
Brunnhilde’s horse?

Grane

(Most entertaining guess: Horse)

CSE 444 Midterm, July 29, 2009 Sample Solution Page 6 of 8

Question 4. Serialization (18 points). For each of the following schedules,
i Draw the precedence graph for the schedule.

ii. If the schedule is confict-serializable, give one equivalent serial schedule. If the schedule is
not conflict-serializable, explain why not.

(a) r1(A) r3(A) wi(A) r2(A) w2(B) w3(B)

RS

This schedule is not conflict serializible because there is a cycle in the precedence graph.

(b) r1(A) wi(A) r3(A) wi(B) r2(A) w3(B) r2(B)

This schedule is conflict-serializable. The only equivalent serial schedule is

r1(A), wi(A), wi(B), r3(A), w3(B), r2(A), r2(B)

CSE 444 Midterm, July 29, 2009 Sample Solution Page 7 of 8

Question 5. Two short questions on transactions and logging (18 points)

(a) Two of the choices we have when designing a transaction and buffer manager are whether to use a

steal or no-steal policy and whether to use a force or no-force policy. Which combination of these two

choices maximizes overall throughput and concurrency in the system? Give a brief explanation for your
answer.

Steal, no-force. Steal allows dirty pages to be written to disk even if the corresponding transaction(s)
haven’t committed, which allows other transactions to reuse buffers. No-force means that dirty
pages do not need to be written to disk when a transaction commits. That can allow several
transactions to write to the same page without needing separate disk write operations for each one,
reducing the time needed for the group of transactions.

(b) In our presentation of the different logging algorithms (undo, redo, and undo-redo), we generally
ignored the possibility that a single element (page) in the buffer pool might contain tuples that were
being processed concurrently by different transactions. The fact that tuples might share physical pages
causes problems for simple undo and redo logging, but not for an undo-redo protocol like ARIES. Briefly,
what is (are) the problem(s) that can occur if tuples being processed by different transactions occupy
the same page when a simple undo or redo log is used? How does the ARIES protocol solve this (these)
problem(s)?

The main problem is that simple undo- and redo-logging have strict requirements about when dirty
buffer pages must be written to disk. Undo logging requires that transactions be logged before
changes are written, and changes must be written before a transaction can commit. If another
transaction has changed a page but not yet logged that change, then writing that page to disk so the
first transaction can commit will violate the requirements of undo logging. Redo logging has a similar
problem since writes to disk must be delayed until all transactions that have written to a page have
committed and have logged both the changes and their commit operations. There is a problem if we
try to use a redo log to recover a disk page that contains changes made by both committed and
uncommitted transactions. We need to redo the page because of the committed transaction(s), but
we can’t redo it because of the one(s) that didn’t commit.

An undo-redo protocol like ARIES avoids these problems by decoupling the timing of commit
operations and buffer writes to disk. As long as all of the log records for an individual transaction are
written to stable storage before any corresponding pages are written (WAL — Write Ahead Log), the
actual page writes can be done at any time after the log entries, the order and timing of commit
operations is independent of other transactions, and the data can be recovered after a crash whether
or not the buffers were written to disk.

[Grading note: actual answers were not expected to be this extensive. The main thing we were
looking for was an understanding of the issues involved when transactions share buffer pages, and the
kinds of conflicts that the simpler logging rules produce.]

CSE 444 Midterm, July 29, 2009 Sample Solution Page 8 of 8

