
Introduction to Database Systems
CSE 444

Lecture 23: Pig Latin (continued)

CSE 444 - Spring 2009

Review: Example from Lecture 22

•  Input: a table of urls:
 (url, category, pagerank)

•  Compute the average pagerank of all
sufficiently high pageranks, for each category

•  Return the answers only for categories with
sufficiently many such pages

2

First in SQL…

3

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

…then in Pig-Latin

4

good_urls = FILTER urls BY pagerank > 0.2

groups = GROUP good_urls BY category

big_groups = FILTER groups

 BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE

 category, AVG(good_urls.pagerank)

Pig Latin combines
•  high-level declarative querying in the spirit of SQL, and
•  low-level, procedural programming a la map-reduce.

We Also Saw JOIN Last Time

5

join_result = JOIN results BY queryString
 revenue BY queryString

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

Today: Cogroup

•  A generic way to group tuples from two
datasets together

CSE 444 - Spring 2009 6

Co-Group

7

grouped_data =
 COGROUP results BY queryString,
 revenue BY queryString;

Dataset 1 results: {(queryString, url, position)}
Dataset 2 revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

What is the output type in general ?

CSE 444 - Spring 2009

{group_id, bag dataset 1, bag dataset 2}

Co-Group

8

Is this an inner join or an outer join ?

CSE 444 - Spring 2009

Co-Group

9

url_revenues = FOREACH grouped_data
 GENERATE
 FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search results and
revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

CSE 444 - Spring 2009

Co-Group v.s. Join

10

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH grouped_data
 GENERATE FLATTEN(results),
 FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

Result is the same as JOIN
CSE 444 - Spring 2009

Asking for Output: STORE

11

STORE query_revenues INTO `myoutput'
 USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

This is when the entire query is finally executed!

CSE 444 - Spring 2009

Query Processing Steps

Pig Latin
program

Implementation

•  Over Hadoop !

•  Parse query:
–  All between LOAD and STORE  one logical plan

•  Logical plan  ensemble of MapReduce jobs
–  Each (CO)Group becomes a MapReduce job

–  Other ops merged into Map or Reduce operators

•  Extra MapReduce jobs for sampling before
SORT operations

13 CSE 444 - Spring 2009

Implementation

14 CSE 444 - Spring 2009

Advice for the Project
•  Always run first locally

–  Test your program on your local machine, on a
smaller dataset

–  After you debugged the program, send it to the
cluster

•  Batch processing:
–  Keep in mind that Hadoop does batch processing

–  Your job takes 2-7 minutes on the cluster

–  No-one else can run on the same compute nodes
during this time !!

15 CSE 444 - Spring 2009

Longer Example: Tutorial Script 2

•  Goal: Process a search query log file and find search
phrases that occur with particular high frequency during
certain times of the day

raw = LOAD 'excite-small.log'

 USING PigStorage('\t') AS (user, time, query);

clean1 = FILTER raw BY

 org.apache.pig.tutorial.NonURLDetector(query);

CSE 444 - Spring 2009 16

Longer Example: Tutorial Script 2

clean2 = FOREACH clean1

 GENERATE user, time,

 org.apache.pig.tutorial.ToLower(query)

 as query;

houred = FOREACH clean2

 GENERATE user,

 org.apache.pig.tutorial.ExtractHour(time)

 AS hour, query;

CSE 444 - Spring 2009 17

Longer Example: Tutorial Script 2

ngramed1 = FOREACH houred

 GENERATE user, hour,
flatten(org.apache.pig.tutorial.NGramGenerator(query))
AS ngram;

ngramed2 = DISTINCT ngramed1;

hour_frequency1 = GROUP ngramed2 BY (ngram, hour);

hour_frequency2 = FOREACH hour_frequency1

 GENERATE flatten($0), COUNT($1) as count;
CSE 444 - Spring 2009 18

Longer Example: Tutorial Script 2

hour_frequency3 = FOREACH hour_frequency2

 GENERATE $0 as ngram, $1 as hour, $2 as count;

hour00 = FILTER hour_frequency2 BY hour eq '00';

hour12 = FILTER hour_frequency3 BY hour eq '12';

same = JOIN hour00 BY $0, hour12 BY $0;

CSE 444 - Spring 2009 19

Longer Example: Tutorial Script 2

same1 = FOREACH same

 GENERATE hour_frequency2::hour00::group::ngram
AS ngram, $2 as count00, $5 as count12;

STORE same1

 INTO 'script2-local-results.txt' USING PigStorage();

CSE 444 - Spring 2009 20

