Introduction to Database Systems
CSE 444

Lecture 22: Pig Latin

Outline

« Based entirely on Pig Latin: A not-so-foreign
language for data processing, by Olston, Reed,
Srivastava, Kumar, and Tomkins, 2008

Why Pig Latin?

 Map-reduce is a low-level programming environment
* |In most applications need more complex queries

* Pig accepts higher level queries written in Pig Latin,
translates them into ensembles of MapReduce jobs
— Pig is the system
— Pig Latin is the language

Pig Engine Overview

Data model = loosely typed nested relations
Query model = a sql-like, dataflow language

Execution model:

— Option 1: run locally on your machine

— Option 2: compile into sequence of map/reduce, run on
a cluster supporting Hadoop

Main idea: use Opt1 to debug, Opt2 to execute

Pig Engine Overview

___________________ program

output } Pig Latin

Parsed
program

Pig-latin will NOT be on the Final

* Pig-latin is a new, experimental language
— (imperfect design, in my opinion)

* Why do we discuss this in class ?

— Because we want to learn massively parallel
queries = Project4

— And because MapReduce is too difficult to use
— And because no other free language is available

Example

* |nput: a table of urls:
(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each category

* Return the answers only for categories with
sufficiently many such pages

Firstin SQL...

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 10¢°

...then in Pig-Latin

good urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups
BY COUNT(good urls) > 106
output = FOREACH big_groups GENERATE
category, AVG(good urls.pagerank)

Pig Latin combines
* high-level declarative querying in the spirit of SQL, and

* low-level, procedural programming a la map-reduce.
9

Types in Pig-Latin
Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘'salesperson’),
(‘Betty’,44, ‘manager’), ...}

Maps: we will try not to use these

10

Types in Pig-Latin
Bags can be nested !

* (&, 11,4,3})), (¢'.{ }). (d', {2,2,5,3,2})}

Tuple components can be referenced by number

- $0, $1, %2, ...

11

t = (‘alice’,{

(‘lakers’, 1) },[‘age’—’QOJ)

(‘iPod’, 2)

Let fields of tuple t be called £f1, £2, £3

Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20 |
L (‘lakers’)
Projection £2.$0 { (‘iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
Conditional f3#‘age’>187 :
. dult’
Expression ‘adult’: ‘minor’ add
. ‘lak S |
Flattening FLATTEN (£2) =

“iPod’, 2

Loading data

* |nput data = FILES !

— Heard that before ?

« The LOAD command parses an input file into
a bag of records

« Both parser (="deserializer”) and output type
are provided by user

13

Loading data

queries = LOAD ‘query_log.txt’
USING myLoad()

AS (userlD, queryString, timeStamp)

14

Loading data

« USING userfuction() --is optional
— Default deserializer expects tab-delimited file
« AS type — is optional

— Default is a record with unnamed fields; refer to them
as 30, 31, ...

* The return value of LOAD is just a handle to a bag
— The actual reading is done in pull mode, or parallelized

15

FOREACH

expanded_queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

16

FOREACH

expanded_queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

17

queries:

(userld, queryString, timestamp)

(alice, lakers, 1)
(bob, iPod, 3)

expandQuery(queryString)

Wy

FOREACH queries GENERATE (alice, {(1""9'5 rumors)

(lakers news)

(without flattening)

with flattening
3 >

> (1Pod nano)]
bob, ~(iPod shuffle)

-’

(alice, lakers rumors)

(alice, lakers news)
(bob, 1Pod nanc)
(bob, iPod shuffle)

18

FLATTEN

Note that it is NOT a first class function !
(that’s one thing | don't like about Pig-latin)

* First class FLATTEN:
— FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
— Type: {{T}} = {T}

* Pig-latin FLATTEN
— FLATTEN({4,5,6}) =4, 5, 6
— Type: {T} > T, T, T, ..., T ?°?°°07?7

19

FILTER

Remove all queries from Web bots:

real_queries = FILTER queries BY userld neq ‘bot’

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userld)

20

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

21

results:
(queryString, url, rank)

(lakers, nba.com, 1)

(lakers, espn.com, 2) _

(kings, nhl.com, 1)

(kings, nba.com, 2) —+—
r

revenue:.
(queryString, adSlot, amount)

(lakers, top, 50) —
(lakers, side, 20) v

(kings, top, 30)
(kings, side, 10) QI

(lakers, nba.com, 1, top , 50)
(lakers, nba.com, 1, side, 20)
(lakers, espn.com, 2, top, 50)
(lakers, espn.com, 2, side, 2@)

-

22

4

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =

FOREACH grouped revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(query3tring, {(adSlot, amount)})}

query_revenues: {(query3tring, totalRevenue)} ’s

Simple Map-Reduce
input : {(field1, field2, field3,)}

map_result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map_result BY $0

output = FOREACH key groups
GENERATE reduce($1)

map_result : {(al, a2, a3, .. .)}
key groups : {(a1, {(a2, a3, .. .)})}

24

Final Comment

* More about Pig and Pig Latin next week

* Project 4: start by downloading pig, run the
tutorial on your local machine

25

