
Introduction to Database Systems
CSE 444

Lecture 19: Operator Algorithms

CSE 444 - Spring 2009

Why Learn About Op Algos?

•  Implemented in commercial DBMSs
–  DBMSs implement different subsets of known algorithms

•  Good algorithms can greatly improve performance

•  Need to know about physical operators to understand
query optimization

CSE 444 - Spring 2009 2

CSE 444 - Spring 2009

Cost Parameters

•  In database systems the data is on disk

•  Cost = total number of I/Os

•  Parameters:
–  B(R) = # of blocks (i.e., pages) for relation R

–  T(R) = # of tuples in relation R

–  V(R, a) = # of distinct values of attribute a
•  When a is a key, V(R,a) = T(R)

•  When a is not a key, V(R,a) can be anything < T(R)

3

CSE 444 - Spring 2009

Cost

•  Cost of an operation = number of disk I/Os to
–  Read the operands

–  Compute the result

•  Cost of writing the result to disk is not included
–  Need to count it separately when applicable

4

CSE 444 - Spring 2009

Cost of Scanning a Table

•  Result may be unsorted: B(R)

•  Result needs to be sorted: 3B(R)
–  We will discuss sorting later

5

CSE 444 - Spring 2009

Outline for Today

•  Join operator algorithms
–  One-pass algorithms (Sec. 15.2 and 15.3)

–  Index-based algorithms (Sec 15.6)

–  Two-pass algorithms (Sec 15.4 and 15.5)

–  Note about readings:
•  In class, we will discuss only algorithms for join operator

(because other operators are easier)

•  Read the book to get more details about these algos

•  Read the book to learn about algos for other operators

6

CSE 444 - Spring 2009

Basic Join Algorithms

•  Logical operator:
–  Product(pname, cname) ⋈ Company(cname, city)

•  Propose three physical operators for the join,
assuming the tables are in main memory:
–  Hash join

–  Nested loop join

–  Sort-merge join

7

CSE 444 - Spring 2009

Hash Join

Hash join: R ⋈ S

•  Scan R, build buckets in main memory

•  Then scan S and join

•  Cost: B(R) + B(S)

•  One-pass algorithm when B(R) <= M
–  By “one pass”, we mean that the operator reads its

operands only once. It does not write intermediate
results back to disk.

8

Hash Join Example

9

Patient Insurance

Patient(pid, name, address)

Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient

2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

10

Patient Insurance

1 2

3 4

Patient

2 4

Insurance

4 3

Showing pid
only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash Join Example

11

Step 1: Scan Patient and create hash table in memory

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2

Hash Join Example

12

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer

2 2

Write to
disk

Hash Join Example

13

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer

4 4

Hash Join Example

14

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 4 3
Output buffer

4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Hash Join Details

15

Open() {
 H = newHashTable();
 S.Open();
 x = S.GetNext();
 while (x != null) {

 H.insert(x); x = S.GetNext();

 }
 S.Close();
 R.Open();
 buffer = [];

}

Hash Join Details

16

GetNext() {
 while (buffer == []) {
 x = R.GetNext();
 if (x==Null) return NULL;
 buffer = H.find(x);
}
z = buffer.first();
buffer = buffer.rest();
return z;
}

Hash Join Details

17

Close() {
release memory (H, buffer, etc.);
R.Close()
}

CSE 444 - Spring 2009

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S

•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S)

•  Not quite one-pass since S is read many times

for each tuple r in R do

 for each tuple s in S do

 if r and s join then output (r,s)

18

CSE 444 - Spring 2009

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

for each page of tuples r in R do

 for each page of tuples s in S do

 for all pairs of tuples

 if r and s join then output (r,s)

19

1 2

Nested Loop Example

20

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer

2 2

Input buffer for Insurance 2 4

Nested Loop Example

21

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 4 3

1 2

Nested Loop Example

22

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

CSE 444 - Spring 2009

Sort-Merge Join

Sort-merge join: R ⋈ S

•  Scan R and sort in main memory

•  Scan S and sort in main memory

•  Merge R and S

•  Cost: B(R) + B(S)

•  One pass algorithm when B(S) + B(R) <= M

•  Typically, this is NOT a one pass algorithm
23

Sort-Merge Join Example

24

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

25

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

26

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

1 1

Sort-Merge Join Example

27

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

Keep going until end of first relation

CSE 444 - Spring 2009

Outline for Today

•  Join operator algorithms
–  One-pass algorithms (Sec. 15.2 and 15.3)

–  Index-based algorithms (Sec 15.6)

–  Two-pass algorithms (Sec 15.4 and 15.5)

28

CSE 444 - Spring 2009

Review: Access Methods

•  Heap file
–  Scan tuples one at the time

•  Hash-based index
–  Efficient selection on equality predicates

–  Can also scan data entries in index

•  Tree-based index
–  Efficient selection on equality or range predicates

–  Can also scan data entries in index

29

CSE 444 - Spring 2009

Index Based Selection

•  Selection on equality: σa=v(R)

•  V(R, a) = # of distinct values of attribute a

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index on a: cost T(R)/V(R,a)

•  Note: we ignored I/O cost for index pages
30

CSE 444 - Spring 2009

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os

•  Index based selection
–  If index is clustered: B(R)/V(R,a) = 100 I/Os

–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

•  Lesson
–  Don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

31

CSE 444 - Spring 2009

Index Nested Loop Join

R ⋈ S

•  Assume S has an index on the join attribute

•  Iterate over R, for each tuple fetch
corresponding tuple(s) from S

•  Cost:
–  If index on S is clustered: B(R) + T(R)B(S)/V(S,a)

–  If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

32

CSE 444 - Spring 2009

Outline for Today

•  Join operator algorithms
–  One-pass algorithms (Sec. 15.2 and 15.3)

–  Index-based algorithms (Sec 15.6)

–  Two-pass algorithms (Sec 15.4 and 15.5)

33

CSE 444 - Spring 2009

Two-Pass Algorithms

•  What if data does not fit in memory?

•  Need to process it in multiple passes

•  Two key techniques
–  Hashing

–  Sorting

34

CSE 444 - Spring 2009

Two Pass Algorithms
Based on Hashing

•  Idea: partition a relation R into buckets, on disk

•  Each bucket has size approx. B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

•  Does each bucket fit in main memory ?

– Yes if B(R)/M <= M, i.e. B(R) <= M2

35

CSE 444 - Spring 2009

Partitioned (Grace) Hash Join

R ⋈ S
•  Step 1:

–  Hash S into M-1 buckets
–  Send all buckets to disk

•  Step 2
–  Hash R into M-1 buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

36

CSE 444 - Spring 2009

•  Partition both relations using hash fn h

•  R tuples in partition i will only match S tuples in
partition i.

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

Partitioned Hash Join

37

CSE 444 - Spring 2009

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

Partitioned Hash Join

•  Read in partition of R, hash it using h2 (≠ h)
–  Build phase

•  Scan matching partition of S, search for matches
–  Probe phase

38

CSE 444 - Spring 2009

Partitioned Hash Join

•  Cost: 3B(R) + 3B(S)

•  Assumption: min(B(R), B(S)) <= M2

39

Partitioned Hash Join

•  See detailed example on the board

CSE 444 - Spring 2009 40

CSE 444 - Spring 2009

External Sorting

•  Problem: Sort a file of size B with memory M

•  Where we need this:
–  ORDER BY in SQL queries

–  Several physical operators

–  Bulk loading of B+-tree indexes.

•  Sorting is two-pass when B < M2

41

External Merge-Sort: Step 1

•  Phase one: load M pages in memory, sort

42

Disk Disk

.
Size M pages

Main memory

Runs of length M pages

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run

•  Result: runs of length M (M – 1)≈ M2

CSE 444 - Spring 2009 43

Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done

Main memory

CSE 444 - Spring 2009

External Merge-Sort

•  Cost:
–  Read+write+read = 3B(R)

–  Assumption: B(R) <= M2

•  Other considerations
–  In general, a lot of optimizations are possible

44

External Merge-Sort

•  See detailed example on the board

CSE 444 - Spring 2009 45

Two-Pass Join Algorithm
Based on Sorting

Join R ⋈ S

•  Step 1: sort both R and S on the join attribute:
–  Cost: 4B(R)+4B(S) (because need to write to disk)

•  Step 2: Read both relations in sorted order,
match tuples
–  Cost: B(R)+B(S)

•  Total cost: 5B(R)+5B(S)

•  Assumption: B(R) <= M2, B(S) <= M2

CSE 444 - Spring 2009 46

Two-Pass Join Algorithm
Based on Sorting

Join R ⋈ S

•  If B(R) + B(S) <= M2

–  Or if use a priority queue to create runs of length 2|M|

•  If the number of tuples in R matching those in S is
small (or vice versa)

•  We can compute the join during the merge phase

•  Total cost: 3B(R)+3B(S)

CSE 444 - Spring 2009 47

Two-Pass Join Algorithm
Based on Sorting

•  See detailed example on the board

CSE 444 - Spring 2009 48

Summary of Join Algorithms

•  Nested Loop Join: B(R) + B(R)B(S)
–  Assuming page-at-a-time refinement

•  Hash Join: 3B(R) + 3B(S)
–  Assuming: min(B(R), B(S)) <= M2

•  Sort-Merge Join: 3B(R)+3B(S)
–  Assuming B(R)+B(S) <= M2

•  Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
–  Assuming S has clustered index on a

49

CSE 444 - Spring 2009

Summary of Query Execution

•  For each logical query plan
–  There exist many physical query plans

–  Each plan has a different cost

–  Cost depends on the data

•  Additionally, for each query
–  There exist several logical plans

•  Next lecture: query optimization
–  How to compute the cost of a complete plan?

–  How to pick a good query plan for a query?
50

