Introduction to Database Systems CSE 444

Lecture 24: Databases as a Service

CSE 444 - Autumn 2009

References

- Amazon SimpleDB, RDS, Elastic MapReduce Websites
 - Part of Amazon Web services
- Google App Engine Datastore Website
 - Part of the Google App Engine
- Microsoft SQL Azure
 - Part of the Azure platform
- Very dynamic space! Need to check docs regularly!
 - Slides revised 12/09 based on CSE 544 Au09 lecture!

Cloud Computing

- A definition
 - "Style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet"
- Basic idea
 - Developer focuses on application logic
 - Infrastructure and data hosted by someone else in their "cloud"
 - Hence all operations tasks handled by cloud service provider
- Some history
 - "computation may someday be organized as a public utility" (John McCarthy 1960)
 - 1999, Infrastructure as a Service
 - Early 2000s Web services
 - 2006, Amazon Web Services
 - And now it's a craze!

Levels of Service

- Infrastructure as a Service (laaS)
 - Example Amazon EC2
- Platform as a Service (PaaS)
 - Example Microsoft Azure, Google App Engine
- Software as a Service (SaaS)
 - Example Google Docs

How About Data Management as a Service?

• Running a DBMS is challenging

- Need to hire a skilled database administrator (DBA)
- Need to provision machines (hardware, software, configuration)
- Problems:
 - If business picks up, may need to scale quickly
 - Workload varies over time
- Solution: Use a DBMS service
 - All machines are hosted in service provider's data centers
 - Data resides in those data centers
 - Pay-per-use policy
 - Elastic scalability
 - No administration!

Basic Features for Data Management as a Service

- Data storage and query capabilities
- Operations and administration tasks handled by provider
 - Include high availability, upgrades, etc.
 - Elastic scalability: Clients pay exactly for the resources they consume; consumption can grow/shrink dynamically
 - No capital expenditures and fast provisioning
- Three different types exist at the moment
 - Simplified data management systems (e.g., Amazon SimpleDB)
 - Standard relational data management systems
 - Analysis services such as Amazon Elastic MapReduce

Outline

Overview of three systems

- Amazon Web Services with SimpleDB RDS, and Elastic MapReduce
- Google App Engine with the Google App Engine Datastore
- Microsoft Azure platform with Azure SQL

Discussion

- Technical challenges behind databases as a service
- Broader impacts of databases as a service

Amazon Web Services

- Since 2006
- "Infrastructure web services platform in the cloud"
- Amazon Elastic Compute Cloud (Amazon EC2[™])
- Amazon Simple Storage Service (Amazon S3[™])
- Amazon SimpleDB™
- Amazon Elastic MapReduce™
- And more...

Amazon EC2

- Amazon Elastic Compute Cloud (Amazon EC2[™])
- Rent compute power on demand ("server instances")
 - Select required capacity: small, large, or extra large instance
 - Share resources with other users (i.e., multi-tenant)
 - Variety of operating systems
- Includes: Amazon Elastic Block Store
 - Off-instance storage that persists independent from life of instance
 - Highly available and highly reliable

Amazon S3

• Amazon Simple Storage Service (Amazon S3[™])

- "Storage for the Internet"
- "Web services interface that can be used to store and retrieve any amount of data, at any time, from anywhere on the web."
- Some key features
 - Write, read, and delete uniquely identified objects containing from 1 byte to 5 gigabytes of data each
 - Objects are stored in buckets, located in US or Europe
 - A bucket can be accessed from anywhere
 - Authentication
 - Reliability

Amazon SimpleDB

• "Web service providing the core database functions of data indexing and querying"

• Partitioning

- Data partitioned into domains: queries run within domain
- Domains seem to be unit of replication. Limit 10GB
- Can use domains to manually create parallelism

• Schema

- No fixed schema
- Objects are defined with attribute-value pairs

Amazon SimpleDB (2/3)

• Indexing

- Automatically indexes all attributes

• Support for writing

PUT and DELETE items in a domain

Support for querying

- GET by key
- Selection + sort
- A simple form of aggregation: count
- Query is limited to 5s and 1MB output (but can continue)

select output_list
from domain_name
[where expression]
[sort_instructions]
[limit limit]

Amazon SimpleDB (3/3)

Availability and consistency

- "Fully indexed data is stored redundantly across multiple servers and data centers"
- "Takes time for the update to propagate to all storage locations. The data will eventually be consistent, but an immediate read might not show the change"

• Integration with other services

- "Developers can run their applications in Amazon EC2 and store their data objects in Amazon S3."
- "Amazon SimpleDB can then be used to query the object metadata from within the application in Amazon EC2 and return pointers to the objects stored in Amazon S3."

Amazon RDS

- Amazon Relational Database Service (Amazon RDS[™])
 - Web service that facilitates set up, operations, and scaling of a relational database in the cloud
 - Full capabilities of a familiar MySQL database
- Some key features
 - Automated patches and backups for user-defined retention period
 - Elastic scalability of course
 - Different db instance sizes
- How do features and costs compare to SimpleDB?

Price Comparison

• Amazon RDS DB instance prices

- From Small DB Instance \$0.11/hour
- To Quadruple Extra Large DB Instance \$3.10/hour
- \$0.10 per GB-month of provisioned storage
- \$0.10 per 1 million I/O requests
- SimpleDB pricing
 - First 25 Amazon SimpleDB Machine Hours / month are free
 - \$0.140/hour thereafter
 - First 1 GB of data transferred in/out per month is free
 - \$0.100 per GB transferred in and \$0.170 per GB out thereafter
 - First 1 GB stored per month is free
 - \$0.250 per GB-month thereafter

Amazon Elastic MapReduce

- "Web service that enables businesses, researchers, data analysts, and developers to easily and costeffectively process vast amounts of data"
- Hosted Hadoop framework on top of EC2 and S3
- Support for Hive and Pig
- User specifies
 - Data location in S3
 - Query
 - Number of machines
- System sets-up the cluster, runs query, and shuts down

Google App Engine

- "Run your web applications on Google's infrastructure"
- Limitation: applications must be written in Python or Java
- Key features (examples for Java)
 - A complete development stack that uses familiar technologies to build and host web applications
 - Includes: Java 6 JVM, a Java Servlets interface, and support for standard interfaces to the App Engine scalable datastore and services, such as JDO, JPA, JavaMail, and Jcache
 - JVM runs in a secured "sandbox" environment to isolate your application for service and security (some ops not allowed)

Google App Engine Datastore (1/3)

• "Distributed data storage service that features a query engine and transactions"

• Partitioning

- Data partitioned into "entity groups"
- Entities of the same group are stored together for efficient execution of transactions

• Schema

- Each entity has a key and properties that can be either
 - Named values of one of several supported data types (includes list)
 - References to other entities
- Flexible schema: different entities can have different properties

Google App Engine Datastore (2/3)

• Indexing

- Applications define indexes: must have one index per query type

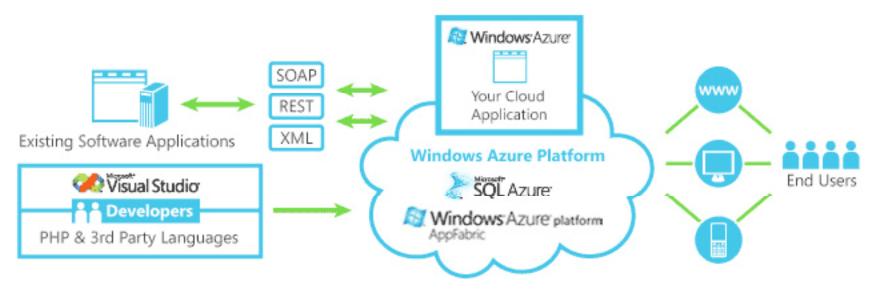
• Support for writing

- PUT and DELETE entities (for Java, hidden behind JDO)

• Support for querying

- Fetch an entity using its key
- Execute a query: selection + sort
- Language bindings: invoke methods or write SQL-like queries
- Lazy query evaluation: query executes when user accesses results

Google App Engine Datastore (3/3)


• Availability and consistency

- Every datastore write operation (put/delete) is atomic
- Support transactions
 - All operations must operate on entities in the same entity group
- Optimistic concurrency control

Microsoft Azure Platform

- "Internet-scale cloud computing and services platform"
- "Provides an operating system and a set of developer services that can be used individually or together"

CSE 444 - Autumn 2009

Azure SQL

- "Cloud-based relational database service built on SQL Server® technologies"
- Key features
 - Highly available, scalable, multi-tenant database service
 - Includes authentication and authorization
 - No administration
 - Full-featured DBMS
- Key limitation
 - Only 10 GB at the moment

Outline

Overview of three systems

- Amazon Web Services with SimpleDB RDS, and Elastic MapReduce
- Google App Engine with the Google App Engine Datastore
- Microsoft Azure platform with Azure SQL

Discussion

- Technical challenges behind databases as a service
- Broader impacts of databases as a service

Challenges of DBMS as a Service

- Scalability requirements
 - Large data volumes and large numbers of clients
 - Variable and heavy workloads
- High performance requirements: interactive web services
- Consistency and high availability guarantees
- Service Level Agreements
- Security

Broader Impacts

- Cost-effective solution for building web services
- Content providers focus only on their application logic
 - Service providers take care of administration
 - Service providers take care of operations
- Security/privacy concerns: all data stored in data centers