
Introduction to Database Systems
CSE 444

Lecture 23: Pig Latin (continued)

CSE 444 - Autumn 2009 1

Where we are…

• Previously…
– LOAD – read data
– FOREACH – with and without flatten
– FILTER
– JOIN
– GROUP BY

Now• Now…
– COGROUP: A generic way to group tuples from

two datasets togethertwo datasets together

2CSE 444 - Autumn 2009

Co-Group
Dataset 1 results: {(queryString url position)}

grouped data =

Dataset 1 results: {(queryString, url, position)}
Dataset 2 revenue: {(queryString, adSlot, amount)}

grouped_data =
COGROUP results BY queryString,

revenue BY queryString;q y g;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}revenue:{(adSlot, amount)})}

What is the output type in general ?

{group id bag dataset 1 bag dataset 2}
3CSE 444 - Autumn 2009

{group_id, bag dataset 1, bag dataset 2}

Co-Group

Is this an inner join or an outer join ?

4CSE 444 - Autumn 2009

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE

FLATTEN(distributeRevenue(results, revenue));

h di t ib t R i UDF th t t h…where distributeRevenue is a UDF that accepts search
results and revenue information for a query string at a
time, and outputs a bag of urls and the revenue attributed

5

to them.
CSE 444 - Autumn 2009

Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;revenue BY queryString;

join_result = FOREACH grouped_data
GENERATE FLATTEN(results)GENERATE FLATTEN(results),

FLATTEN(revenue);

R lt i th JOIN
6

Result is the same as JOIN
CSE 444 - Autumn 2009

Asking for Output: STORE

STORE query_revenues INTO `theoutput'
USING myStore();USING myStore();

Meaning: write query_revenues to the file ‘theoutput’

This is when the entire query is finally executed!

7CSE 444 - Autumn 2009

Query Processing Steps

Pi L tiPig Latin
program

8

Implementation

• Over Hadoop
• Parse query:q y

– All between LOAD and STORE one logical plan
• Logical plan ensemble of MapReduce jobs

– Each (CO)Group becomes a MapReduce job
– Other ops merged into Map or Reduce operators

• Extra MapReduce jobs for sampling before
SORT operations

9CSE 444 - Autumn 2009

Implementation

10CSE 444 - Autumn 2009

Advice for the Project
• Always run first locallyy y

– Test your program on your local machine, on a
smaller dataset
After you debugged the program send it to the– After you debugged the program, send it to the
cluster

• Batch processing:p g
– Keep in mind that Hadoop does batch processing
– Your job takes 2-7 minutes on the cluster*

N l th t d– No-one else can run on the same compute nodes
during this time !!*

*Guidelines from previous versions of the project on a research cluster. Not sure how it will apply on AWS.

11CSE 444 - Autumn 2009

Longer Example: Tutorial Script 2

• Goal: Process a search query log file and find search
phrases that occur with particular high frequency during
certain times of the daycertain times of the day

raw = LOAD 'excite-small.log'raw LOAD excite small.log
USING PigStorage('\t') AS (user, time, query);

clean1 = FILTER raw BY
org.apache.pig.tutorial.NonURLDetector(query);

CSE 444 - Autumn 2009 12

Longer Example: Tutorial Script 2

clean2 = FOREACH clean1
GENERATE user, time,
org.apache.pig.tutorial.ToLower(query)
as query;

houred = FOREACH clean2
GENERATE userGENERATE user,
org.apache.pig.tutorial.ExtractHour(time)
AS hour, query;, q y;

CSE 444 - Autumn 2009 13

Longer Example: Tutorial Script 2

ngramed1 = FOREACH houred
GENERATE user, hour,

fl tt (h i t t i l NG G t ())flatten(org.apache.pig.tutorial.NGramGenerator(query))
AS ngram;

ngramed2 = DISTINCT ngramed1;

hour_frequency1 = GROUP ngramed2 BY (ngram, hour);
hour_frequency2 = FOREACH hour_frequency1

GENERATE flatten($0), COUNT($1) as count;
CSE 444 - Autumn 2009 14

Longer Example: Tutorial Script 2

hour_frequency3 = FOREACH hour_frequency2
GENERATE $0 as ngram, $1 as hour, $2 as count;

hour00 = FILTER hour_frequency2 BY hour eq '00';
h 12 FILTER h f 3 BY h '12'hour12 = FILTER hour_frequency3 BY hour eq '12';

same = JOIN hour00 BY $0 hour12 BY $0;same JOIN hour00 BY $0, hour12 BY $0;

CSE 444 - Autumn 2009 15

Longer Example: Tutorial Script 2

same1 = FOREACH same
GENERATE hour_frequency2::hour00::group::ngram
AS $2 t00 $5 t12AS ngram, $2 as count00, $5 as count12;

STORE same1STORE same1
INTO 'script2-local-results.txt' USING PigStorage();

CSE 444 - Autumn 2009 16

