Introduction to Database Systems
CSE 444

Lecture 23: Pig Latin (continued)

CSE 444 - Autumn 2009 1

Where we are...

* Previously...
— LOAD - read data
— FOREACH — with and without flatten
— FILTER
— JOIN
— GROUP BY

e Now...

— COGROUP: A generic way to group tuples from
two datasets together

CSE 444 - Autumn 2009

Co-Group

Dataset 1 results: {(queryString, url, position)}
Dataset 2 revenue: {(queryString, adSlot, amount)}

grouped data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ?

{group _Id, bag dataset 1, bag dataset 2}

CSE 444 - Autumn 2009 3

Co-Group

grouped_data: (group, results, revenue)
results: - -
(queryString, url, rank) (1ul:er5 {(lukers, nba.com, 1) (lakers, top, 5@) })
* 9 (lakers, espn.com, 2) [+ T (lakers, side, 2@)
(lakers, nba.com, 1) COGROUP
{lakers, espn.com, 2

(kings, nhl.com, 1) A :
(kings, nba.com, 2 —r (kings, {(k?”gs’ AL - (kings, top, 3@}})

A

— e

A

(kings, nba.com, 2) (kings, side, 1@)

— —

revenue:
(queryString, adSlot, amount)

(lakers, top, 58) ——
(lakers, side, 28) |
(kings, top, 3@)
(kings, side, 1@)

Is this an inner join or an outer join ?

CSE 444 - Autumn 2009 4

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

...where distributeRevenue is a UDF that accepts search
results and revenue information for a query string at a
time, and outputs a bag of urls and the revenue attributed

to them.
CSE 444 - Autumn 2009 5

Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN

CSE 444 - Autumn 2009 6

Asking for Output: STORE

STORE query_revenues INTO ‘theoutput'
USING myStore();

Meaning: write query_revenues to the file ‘theoutput’

This Is when the entire query is finally executed!

CSE 444 - Autumn 2009

Query Processing Steps

Pig Latin
program

Parsed

Implementation

Over Hadoop

Parse query:
— All between LOAD and STORE - one logical plan

Logical plan - ensemble of MapReduce jobs
— Each (CO)Group becomes a MapReduce job
— Other ops merged into Map or Reduce operators

Extra MapReduce jobs for sampling before
SORT operations

CSE 444 - Autumn 2009 9

Implementation

map, reduce; map; reduce;map;,, reduce,. .
logd @ » filter | » group | ------------ » COQroup ----» COQroug —™
. A
¢, ! {1 ' '[u-l
load

CSE 444 - Autumn 2009 10

Advice for the Project

Always run first locally

— Test your program on your local machine, on a
smaller dataset

— After you debugged the program, send it to the
cluster

Batch processing:
— Keep in mind that Hadoop does batch processing
— Your job takes 2-7 minutes on the cluster*

— No-one else can run on the same compute nodes
during this time !I'*

*Guidelines from previous versions of the project on a research cluster. Not sure how it will apply on AWS.

CSE 444 - Autumn 2009 11

Longer Example: Tutorial Script 2

 Goal: Process a search guery log file and find search
phrases that occur with particular high frequency during
certain times of the day

raw = LOAD 'excite-small.log'
USING PigStorage('\t') AS (user, time, query);

cleanl = FILTER raw BY
org.apache.pig.tutorial. NonURLDetector(query);

CSE 444 - Autumn 2009 12

Longer Example: Tutorial Script 2

clean2 = FOREACH cleanl
GENERATE user, time,
org.apache.pig.tutorial. ToLower(query)
as query;

houred = FOREACH clean2
GENERATE user,
org.apache.pig.tutorial.ExtractHour(time)
AS hour, query;,

CSE 444 - Autumn 2009 13

Longer Example: Tutorial Script 2

ngramedl = FOREACH houred

GENERATE user, hour,
flatten(org.apache.pig.tutorial. NGramGenerator(query))
AS ngram,;

ngramed2 = DISTINCT ngramedl,;

hour_frequencyl = GROUP ngramed2 BY (ngram, hour);
hour_frequency2 = FOREACH hour_frequencyl
GENERATE flatten($0), COUNT($1) as count;

CSE 444 - Autumn 2009 14

Longer Example: Tutorial Script 2

hour_frequency3 = FOREACH hour_frequency?2
GENERATE $0 as ngram, $1 as hour, $2 as count;

hourOO = FILTER hour_frequency2 BY hour eq '00",
hourl2 = FILTER hour_frequency3 BY hour eq '12";

same = JOIN hour00 BY $0, hourl2 BY $0:

CSE 444 - Autumn 2009 15

Longer Example: Tutorial Script 2

samel = FOREACH same

GENERATE hour_frequency2::hourO0::group::ngram
AS ngram, $2 as count00, $5 as countl12;

STORE samel
INTO 'script2-local-results.txt' USING PigStorage();

CSE 444 - Autumn 2009 16

