
Introduction to Database Systems
CSE 444

Lecture 22: Pig Latin

1CSE 444 - Autumn 2009

Outline

• Based entirely on Pig Latin: A not-so-foreign
language for data processing, by Olston, Reed,
Srivastava Kumar and Tomkins 2008Srivastava, Kumar, and Tomkins, 2008

2CSE 444 - Autumn 2009

Why Pig Latin?

• Map-reduce is a low-level programming environment

• In most applications need more complex queries

Pi t hi h l l i itt i Pi L ti• Pig accepts higher level queries written in Pig Latin,
translates them into ensembles of MapReduce jobs
– Pig is the system
– Pig Latin is the language

3CSE 444 - Autumn 2009

Pig Engine Overview
• Data model = loosely typed nested relations• Data model = loosely typed nested relations
• Query model = a sql-like, dataflow language

• Execution model:
Option 1: run locally on your machine– Option 1: run locally on your machine

– Option 2: compile into sequence of map/reduce, run on
a cluster supporting Hadooppp g p

• Main idea: use Opt1 to debug, Opt2 to execute

4CSE 444 - Autumn 2009

Pig Engine Overview

Pi L tiPig Latin
program

5

Pig-latin will NOT be on the Final

• Pig-latin is a new, experimental language
– (imperfect design depending on who you talk to,

but …)

• Why do we discuss this in class ?
– Because we want to learn massively parallel

queriesÆ Project4queries Æ Project4
– And because MapReduce is too difficult to use
– And because no other free language is availableAnd because no other free language is available

6CSE 444 - Autumn 2009

Example

• Input: a table of urls:
(url, category, pagerank)

• Compute the average pagerank of all
sufficiently high pageranks, for each category

• Return the answers only for categories with
sufficiently many such pages

7CSE 444 - Autumn 2009

First in SQL…

SELECT category, AVG(pagerank)g y, (p g)
FROM urls
WHERE pagerank > 0.2WHERE pagerank 0.2
GROUP By category
HAVING COUNT(*) > 106HAVING COUNT() > 10

8CSE 444 - Autumn 2009

…then in Pig-Latin

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank)

Pig Latin combines
• high-level declarative querying in the spirit of SQL, and

9

high level declarative querying in the spirit of SQL, and
• low-level, procedural programming a la map-reduce.

Types in Pig-Latin

• Atomic: string or number, e.g. ‘Alice’ or 55

• Tuple: (‘Alice’, 55, ‘salesperson’)

• Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), …}(y , , g), }

• Maps: we will try not to use theseaps e y o o use ese

10CSE 444 - Autumn 2009

Types in Pig-Latin

Bags can be nested !

• {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by number
• $0 $1 $2$0, $1, $2, …

11CSE 444 - Autumn 2009

12

Loading data

• Input data = FILES !
– Heard that before ?

• The LOAD command parses an input file into
a bag of records

• Both parser (=“deserializer”) and output type
are provided by user

13CSE 444 - Autumn 2009

Loading data

queries = LOAD ‘query_log.txt’
USING myLoad()
AS (userID, queryString, timeStamp)(q y g p)

14CSE 444 - Autumn 2009

Loading data

• USING userfuction() -- is optional
– Default deserializer expects tab-delimited file

• AS type – is optional
– Default is a record with unnamed fields; refer to them

$ $as $0, $1, …
• The return value of LOAD is just a handle to a bag

Th t l di i d i ll d ll li d– The actual reading is done in pull mode, or parallelized

15CSE 444 - Autumn 2009

FOREACH

expanded_queries =
FOREACH queries
GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag hence expanded queries is a nested bag

16

Note: it returns a bag, hence expanded_queries is a nested bag

CSE 444 - Autumn 2009

FOREACH

expanded_queries =
FOREACH queries
GENERATE userId,

flatten(expandQuery(queryString))

Now we get a flat collection
17

Now we get a flat collection
CSE 444 - Autumn 2009

18CSE 444 - Autumn 2009

FLATTEN

Note that it is NOT a first class function !
(that’s one thing I* don’t like about Pig-latin)

• First class FLATTEN:
– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}

{{ }}Æ { }– Type: {{T}} Æ {T}
• Pig-latin FLATTEN

FLATTEN({4 5 6}) 4 5 6– FLATTEN({4,5,6}) = 4, 5, 6
– Type: {T} Æ T, T, T, …, T ?????

* “I” = original author of these slides. Opinions might or might not be consistent from quarter to quarter. ☺
19CSE 444 - Autumn 2009

FILTER

l i FILTER i BY Id ‘b t’

Remove all queries from Web bots:

real_queries = FILTER queries BY userId neq ‘bot’

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userId)

20

BY NOT isBot(userId)
CSE 444 - Autumn 2009

JOIN
res lts {(q er String rl position)}results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryStringrevenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

21CSE 444 - Autumn 2009

22CSE 444 - Autumn 2009

GROUP BY
re en e {(q er String adSlot amo nt)}

grouped_revenue = GROUP revenue BY queryString

revenue: {(queryString, adSlot, amount)}

query_revenues =
FOREACH grouped_revenue
GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

grouped revenue: {(queryString {(adSlot amount)})}
23

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}

Simple Map-Reduce
inp t {(field1 field2 field3)}

map_result = FOREACH input

input : {(field1, field2, field3,)}

GENERATE FLATTEN(map(*))
key_groups = GROUP map_result BY $0
output = FOREACH key_groups

GENERATE reduce($1)

map result : {(a1, a2, a3, . . .)}

24

p_ {(, , ,)}
key_groups : {(a1, {(a2, a3, . . .)})}

Final Comment

• More about Pig and Pig Latin next time

• Project 4: start by:
– downloading pig, run the tutorial on your local

machine
– set up your Amazon account while you’re doing

that so it’s ready when you need itthat so it s ready when you need it

25CSE 444 - Autumn 2009

