
Introduction to Database Systems
CSE 444

Lectures 9-10
Transactions: recovery

CSE 444 - Autumn 2009 1

Outline

• We are starting to look at DBMS internals

• Today and next time: transactions & recovery
– Disks 13.2 [Old edition: 11.3]
– Undo logging 17.2
– Redo logging 17.3
– Redo/undo 17.4

CSE 444 - Autumn 2009 2

The Mechanics of Disk
M h i l h t i ti

Cylinder
Mechanical characteristics:
• Rotation speed (5400 RPM)
• Number of platters (1 30)

Spindle
Disk head Tracks

• Number of platters (1-30)
• Number of tracks (<=10000)
• Number of bytes/track(105)

Sector

Number of bytes/track(10)

Pl tt

Unit of read or write:
disk block Platters

Arm movement
disk block

Once in memory:
page

Typically: 4k or 8k or 16k
Arm assembly

Typically: 4k or 8k or 16k
3

Disk Access Characteristics

• Disk latency = time between when command is issued
and when data is in memory

• Disk latency = seek time + rotational latency
– Seek time = time for the head to reach cylinder

10 40• 10ms – 40ms
– Rotational latency = time for the sector to rotate

• Rotation time = 10ms
Average latency 10ms/2• Average latency = 10ms/2

• Transfer time = typically 40MB/s
• Disks read/write one block at a time

CSE 444 - Autumn 2009 4

Storage Latency:
How Far Away is the Data?How Far Away is the Data?

Andromeda

Tape /Optical
Robot

109 2,000 Years

Disk10 6 2 YearsPluto

Memory100 Olympia 1.5 hr

On Chip Cache
On Board Cache

Memory

2
10

100

This Building
This Room

10 min

10/16/2009 © 2007 Gribble, Lazowska, Levy,
Zahorjan

5
2

Registers1 My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

RAID

Several disks that work in parallel
• Redundancy: use parity to recover from disk failure

Speed: read from several disks at once• Speed: read from several disks at once

Various configurations (called levels):
• RAID 1 = mirror
• RAID 4 = n disks + 1 parity disk
• RAID 5 = n+1 disks assign parity blocks round robin• RAID 5 = n+1 disks, assign parity blocks round robin
• RAID 6 = “Hamming codes”

CSE 444 - Autumn 2009 6

Design Question

• Consider the following query:

SELECT S1 temp S2 pressureSELECT S1.temp, S2.pressure
FROM TempSensor S1, PressureSensor S2
WHERE S1.location = S2.location
AND S1 ti S2 ti

• How can the DBMS execute this query given

AND S1.time = S2.time

How can the DBMS execute this query given
– 1 GB of memory
– 100 GB TempSensor and 10 GB PressureSensorp

CSE 444 - Autumn 2009 7

Buffer Manager
Page requests from higher-level code

READ
WRITE

Buffer pool Buffer pool manager
Files and access methods

Main
memory

Disk page

Free frame

INPUT
OUTPUT

choice of frame dictated
by replacement policy

Disk 1 page corresponds
to 1 disk block

Disk = collection
of blocks

Disk space manager

to 1 disk block

• Data must be in RAM for DBMS to operate on it!
• Buffer pool = table of <frame#, pageid> pairs

8

Buffer Manager

• Enables higher layers of the DBMS to
assume that needed data is in main memory

• Needs to decide on page replacement policy
– LRU, clock algorithm, or other

• Both work well in OS, but not always in DB

CSE 444 - Autumn 2009 9

Least Recently Used (LRU)

• Order pages by the time of last accessed
• Always replace the least recently accessedy p y

P5, P2, P8, P4, P1, P9, P6, P3, P7, , , , , , , ,

Access P6Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx

Buffer Manager

• Why not use the OS for the task??
• Reason 1: Correctness

– DBMS needs fine grained control for transactions
– Needs to force pages to disk for recovery purposes

• Reason 2: Performance
– DBMS may be able to anticipate access patterns
– Hence, may also be able to perform prefetching
– May select better page replacement policy

CSE 444 - Autumn 2009 11

Transaction Management andTransaction Management and
the Buffer Manager

Transaction manager operates on buffer pool
• Recovery: ‘log-file write-ahead’, then careful y g

policy about which pages to force to disk
• Concurrency control: locks at the page

level, multiversion concurrency control

Will discuss details during the next few lectures

CSE 444 - Autumn 2009 12

Transaction Management

Two parts:

• Recovery from crashes: ACID
• Concurrency control: ACIDy

Both operate on the buffer poolBoth operate on the buffer pool

Today we focus on recoveryToday, we focus on recovery
CSE 444 - Autumn 2009 13

Problem Illustration
Client 1:Client 1:

START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99WHERE price 0.99

DELETE Product
WHERE price <=0 99

Crash !

WHERE price <=0.99
COMMIT

What do we do now?
CSE 444 - Autumn 2009

What do we do now?
14

Recovery

From which events below can DBMS recover ?
• Wrong data entryg y
• Disk failure
• Fire / earthquake / bankruptcy / ….q p y
• Systems crashes

– Software errors
– Power failures

CSE 444 - Autumn 2009 15

Recovery

Type of Crash Prevention

C t i t dWrong data entry Constraints and
Data cleaning

Redundancy:Disk crashes Redundancy:
e.g. RAID, archive

Fire theft Buy insuranceFire, theft,
bankruptcy…

Buy insurance,
Change jobs…

DATABASE
Most

frequent System failures DATABASE
RECOVERY

frequent
16

System Failures

• Each transaction has internal state

• When system crashes, internal state is lost
– Don’t know which parts executed and which didn’t
– Need ability to undo and redo

• Remedy: use a log
– File that records every single action of each transaction

CSE 444 - Autumn 2009 17

Transactions

• Assumption: db composed of elements
– Usually 1 element = 1 block

C b ll (1 d) l (1 l ti)– Can be smaller (=1 record) or larger (=1 relation)

• Assumption: each transaction reads/writes• Assumption: each transaction reads/writes
some elements

CSE 444 - Autumn 2009 18

Primitive Operations ofPrimitive Operations of
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffery

• OUTPUT(X)
– write element X to disk

CSE 444 - Autumn 2009 19

Example
START TRANSACTIONSTART TRANSACTION
READ(A,t);
t t*2t := t*2;
WRITE(A,t);

Atomicity:
BOTH A and B

READ(B,t);
t := t*2;

are multiplied by 2

WRITE(B,t);
COMMIT;

CSE 444 - Autumn 2009 20

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8

READ(A,t)READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t)READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A)

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

Buffer pool DiskTransaction

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Action t Mem A Mem B Disk A Disk BAction t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8()

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity 30

Buffer Manager Policies

• STEAL or NO-STEAL
– Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?the most recent committed value of a data item on disk?

• FORCE or NO-FORCE
– Should all updates of a transaction be forced to disk before the

transaction commits?

• Easiest for recovery: NO-STEAL/FORCE
• Highest performance: STEAL/NO-FORCE

CSE 444 - Autumn 2009

g p

31

Solution: Use a Log

• Log = append-only file containing log records
• Note: multiple transactions run concurrently, p y

log records are interleaved
• After a system crash, use log to:

– Redo some transactions that did commit
– Undo other transactions that did not commit

• Three kinds of logs: undo, redo, undo/redo

CSE 444 - Autumn 2009 32

Undo Logging
L dLog records
• <START T>

Transaction T has begun– Transaction T has begun
• <COMMIT T>

– T has committedT has committed
• <ABORT T>

– T has aborted
• <T,X,v> -- Update record

– T has updated element X, and its old value was v

CSE 444 - Autumn 2009 33

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A t) 16 16 8 8 <T A 8>WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A t) 16 16 8 8 <T A 8>WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16 Crash !

COMMIT <COMMIT T>

WHAT DO WE DO ?

Action T Mem A Mem B Disk A Disk B Log

<START T>START T

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ?

After Crash

• In the first example:
– We UNDO both changes: A=8, B=8

The transaction is atomic since none of its actions has been– The transaction is atomic, since none of its actions has been
executed

• In the second example
– We don’t undo anything
– The transaction is atomic, since both it’s actions have beenThe transaction is atomic, since both it s actions have been

executed

CSE 444 - Autumn 2009 37

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be
written to disk before <COMMIT T>written to disk before <COMMIT T>

• Hence: OUTPUTs are done early before theHence: OUTPUTs are done early, before the
transaction commits

CSE 444 - Autumn 2009 38

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A) 8 8 8 8READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A t) 16 16 8 8 <T A 8>WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Recovery with Undo Log

After system’s crash, run recovery manager

• Idea 1. Decide for each transaction T whether
it is completed or not

<START T> <COMMIT T> = yes– <START T>….<COMMIT T>…. = yes
– <START T>….<ABORT T>……. = yes
– <START T>……………………… = no

• Idea 2. Undo all modifications by incomplete
transactions

CSE 444 - Autumn 2009 40

Recovery with Undo Log

Recovery manager:
• Read log from the end; cases:g

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk
else ignoreelse ignore

<START T>: ignore

CSE 444 - Autumn 2009 41

Recovery with Undo Log
…
…
<T6,X6,v6> Question1 in class:

Which updates are…
…
<START T5>

S

undone ?

Question 2 in class:<START T4>
<T1,X1,v1>
<T5,X5,v5>

Question 2 in class:
How far back
do we need to
read in the log ?, ,

<T4,X4,v4>
<COMMIT T5>
<T3 X3 v3>

read in the log ?

<T3,X3,v3>
<T2,X2,v2>crash

42

Recovery with Undo Log

• Note: all undo commands are idempotent
– If we perform them a second time, no harm done
– E.g. if there is a system crash during recovery,

simply restart recovery from scratch

CSE 444 - Autumn 2009 43

Recovery with Undo Log

When do we stop reading the log ?
• We cannot stop until we reach the beginning p g g

of the log file
• This is impractical

Instead: use checkpointingp g

CSE 444 - Autumn 2009 44

Checkpointing

Checkpoint the database periodically
• Stop accepting new transactionsp p g
• Wait until all current transactions complete
• Flush log to diskg
• Write a <CKPT> log record, flush
• Resume transactionsResume transactions

CSE 444 - Autumn 2009 45

Undo Recovery withUndo Recovery with
Checkpointing

…
…
<T9,X9,v9>

During recovery other transactions…
…
(all completed)
<CKPT>

During recovery,
Can stop at first
<CKPT>

<START T2>
<START T3
<START T5>
<START T4>START T4
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>

COMMIT T5

transactions T2,T3,T4,T5

<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2> 46

Nonquiescent Checkpointing

• Problem with checkpointing: database
freezes during checkpoint

• Would like to checkpoint while database is
operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Autumn 2009 47

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions.
Flush log to disk

• Continue normal operation

• When all of T1,…,Tk have completed, write
<END CKPT>. Flush log to disk

CSE 444 - Autumn 2009 48

Undo Recovery withUndo Recovery with
Nonquiescent Checkpointing

…
…
…
…During recovery

earlier transactions plus
T4 T5 T6…

…
<START CKPT T4, T5, T6>
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6

…
…
…
<END CKPT>

T4, T5, T6, plus
later transactions

…
…
…

later transactionslater transactions
Q: why do we need
<END CKPT> ? 49

Implementing ROLLBACK

• Recall: a transaction can end in COMMIT or
ROLLBACK

• Idea: use the undo-log to implement
ROLLBCACK

• How ?
• LSN = Log Sequence Number
• Log entries for the same transaction are

linked, using the LSN’s

CSE 444 - Autumn 2009 50

Redo Logging

Log records
• <START T> = transaction T has begung
• <COMMIT T> = T has committed
• <ABORT T>= T has aborted
• <T,X,v>= T has updated element X, and its

new value is v

CSE 444 - Autumn 2009 51

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A t) 16 16 8 8 <T A 16>WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8t: t 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Autumn 2009 52

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

• Hence: OUTPUTs are done late

CSE 444 - Autumn 2009 53

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A t) 16 16 8 8 <T A 16>WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8t: t 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Autumn 2009 54

Recovery with Redo Log

After system’s crash, run recovery manager
• Step 1. Decide for each transaction T whether

it i l t d tit is completed or not
– <START T>….<COMMIT T>…. = yes
– <START T> <ABORT T> = yes– <START T>….<ABORT T>……. = yes
– <START T>……………………… = no

• Step 2. Read log from the beginning, redo all p g g g,
updates of committed transactions

CSE 444 - Autumn 2009 55

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2><START T2>
<T2, X2, v2>
<START T3>
<T1 X3 3><T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
……

CSE 444 - Autumn 2009 56

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Flush to disk all blocks of committed
transactions (dirty blocks), while continuing

l tinormal operation
• When all blocks have been written, write

<END CKPT><END CKPT>

CSE 444 - Autumn 2009 57

Redo Recovery withRedo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>Step 1: look for Step 2: redo
…a
<START T4>
…
<START CKPT T4, T5, T6>

Step 1: look for
The last
<END CKPT>

p
from the
earliest
start of…

…
…
…

start of
T4, T5, T6
ignoring
t ti

All OUTPUTs
of T1 are

<END CKPT>
…
…
…

transactions
committed
earlier

known to be on disk

C t <START CKPT T9, T10>
…

Cannot
use 58

Comparison Undo/Redo

• Undo logging:
– OUTPUT must be done early
– If <COMMIT T> is seen T definitely has written all its data to

Steal/Force
If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) – inefficient

• Redo logging
– OUTPUT must be done late No-Steal/No-Force– OUTPUT must be done late
– If <COMMIT T> is not seen, T definitely has not written any

of its data to disk (hence there is not dirty data on disk, no
need to undo) – inflexible

No Steal/No Force

)
• Would like more flexibility on when to OUTPUT:

undo/redo logging (next) Steal/No-Force

CSE 444 - Autumn 2009 59

Undo/Redo Logging

Log records, only one change
• <T,X,u,v>= T has updated element X, its oldp

value was u, and its new value is v

CSE 444 - Autumn 2009 60

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

CSE 444 - Autumn 2009 61

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A t) 16 16 8 8 <T A 8 16>WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8t: t 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
• Redo all committed transaction, top-downp
• Undo all uncommitted transactions, bottom-up

CSE 444 - Autumn 2009 63

Recovery with Undo/Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2 X2 v2><T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
……

CSE 444 - Autumn 2009 64

Granularity of the Log

• Physical logging: element = physical page
• Logical logging: element = data recordg gg g

• What are the pros and cons ?p

CSE 444 - Autumn 2009 65

Granularity of the Log

• Modern DBMS:

• Physical logging for the REDO part
– Efficiency

• Logical logging for the UNDO part
– For ROLLBACKs

CSE 444 - Autumn 2009 66

