Introduction to Database Systems CSE 444

Lecture 22: Query Optimization

May 30-June 2, 2008

1

Outline

- An example
- Query optimization: algebraic laws 16.2
- Cost-based optimization 16.5, 16.6
- Cost estimation: 16.4

2

Example

Product(pname, maker), Company(cname, city)

Select Product.pname

From Product, Company

Where Product.maker=Company.cname

and Company.city = "Seattle"

• How do we execute this query?

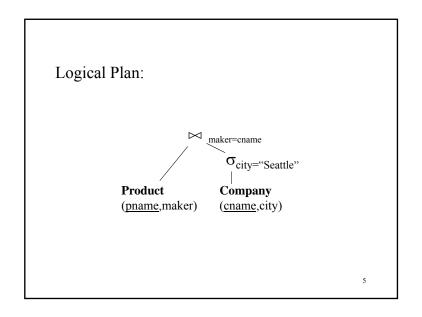
3

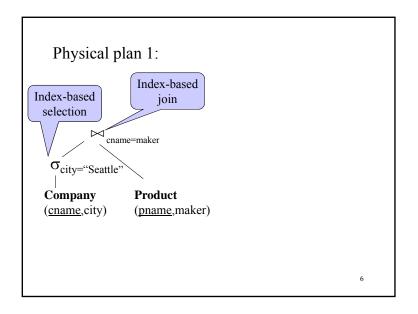
Example

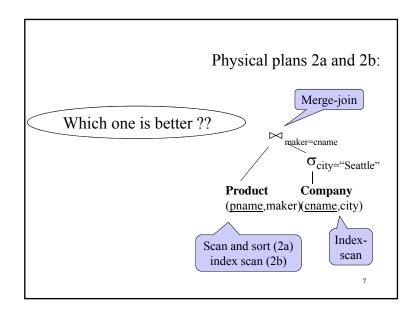
Product(pname, maker), Company(cname, city)

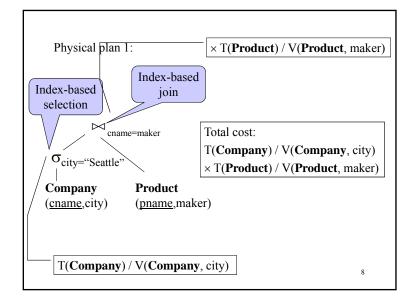
Assume:

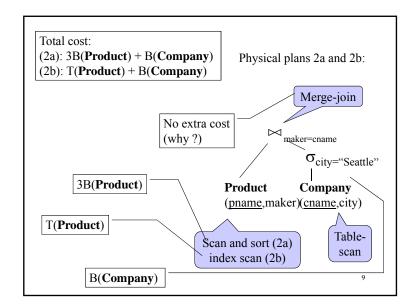
Clustered index: **Product**.pname, **Company**.cname
Unclustered index: **Product**.maker, **Company**.city

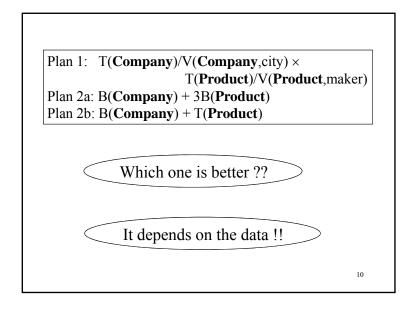


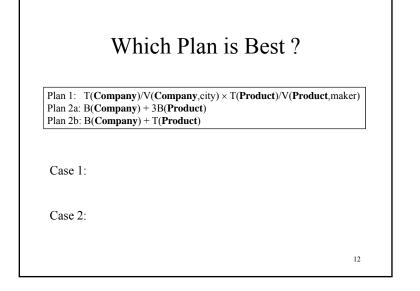












Lessons

- Need to consider several physical plans
 - even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
 - need to have <u>statistics</u> over the data
 - the B's, the T's, the V's

13

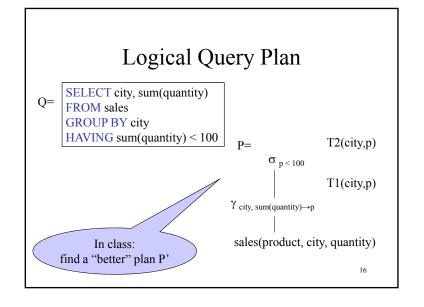
Query Optimzation

- Have a SQL query Q
- Create a plan P

- Find equivalent plans P = P' = P'' = ...
- Choose the "cheapest".

14

Logical Query Plan Purchase(buyer, city) SELECT P.buyer FROM Purchase P, Person Q Person(name, phone) WHERE P.buyer=Q.name AND P.city='seattle' AND Q.phone > '5430000' City='seattle' hone>'5430000' \bowtie Buver=name In class: **Purchase** Person find a "better" plan P' 15



The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

17

Algebraic Laws (incomplete list)

• Commutative and Associative Laws $R \cup S = S \cup R, \ R \cup (S \cup T) = (R \cup S) \cup T$ $R \mid \times \mid S = S \mid \times \mid R, \ R \mid \times \mid (S \mid \times \mid T) = (R \mid \times \mid S) \mid \times \mid T$

• Distributive Laws $R \mid \times \mid (S \cup T) = (R \mid \times \mid S) \cup (R \mid \times \mid T)$

18

Algebraic Laws (incomplete list)

• Laws involving selection:

$$\sigma_{C \text{ AND } C'}(R) = \sigma_{C}(\sigma_{C'}(R))$$

$$\sigma_{C \text{ OR } C'}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$$

• When C involves only attributes of R

$$\sigma_{C}(R \mid x \mid S) = \sigma_{C}(R) \mid x \mid S$$

$$\sigma_{C}(R - S) = \sigma_{C}(R) - S$$

$$\sigma_{C}(R \mid x \mid S) = \sigma_{C}(R) \mid x \mid S$$

19

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R |x|_{D=E} S) = G$$

$$\sigma_{A=5 \text{ AND } G=9}(R |x|_{D=E} S) = ?$$

Algebraic Laws

- Laws involving projections $\Pi_{M}(R \mid x \mid S) = \Pi_{M}(\Pi_{P}(R) \mid x \mid \Pi_{Q}(S))$ $\Pi_{M}(\Pi_{N}(R)) = \Pi_{M,N}(R)$
- Example R(A,B,C,D), S(E, F, G) $\Pi_{ABG}(R | \times |_{D=E} S) = \Pi_{2}(\Pi_{2}(R) | \times |_{D=E} \Pi_{2}(S))$

21

Algebraic Laws

• Laws involving grouping and aggregation:

$$\begin{split} &\delta(\gamma_{A, \text{ agg}(B)}(R)) = \gamma_{A, \text{ agg}(B)}(R) \\ &\gamma_{A, \text{ agg}(B)}(\delta(R)) = \gamma_{A, \text{ agg}(B)}(R) \text{ if agg is "duplicate insensitive"} \end{split}$$

• Which of the following are "duplicate insensitive"? sum, count, avg, min, max

$$\begin{array}{l} \gamma_{A,\;agg(D)}\!(R(A,\!B)\;|\times|_{\;B=C}\;S(C,\!D)) = \\ \gamma_{A,\;agg(D)}\!(R(A,\!B)\;|\times|_{\;B=C}\;(\gamma_{C,\;agg(D)}\!S(C,\!D))) \end{array}$$

22

Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one
 - Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans

23

Cost-based Optimizations

Approaches:

- **Top-down**: the partial plan is a top fragment of the logical plan
- **Bottom up**: the partial plan is a bottom fragment of the logical plan

Dynamic Programming

Originally proposed in System R (the first research prototype for a relational database system -- late 70s)

• Only handles single block queries:

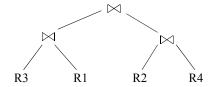
SELECT list FROM list WHERE cond₁ AND cond₂ AND . . . AND cond_k

- Heuristics: selections down, projections up
- Dynamic programming: join reordering

25

Join Trees

- R1 |×| R2 |×| |×| Rn
- Join tree:

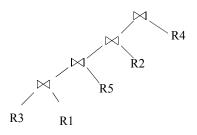


- A plan = a join tree
- A partial plan = a subtree of a join tree

26

Types of Join Trees

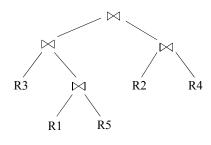
• Left deep:



27

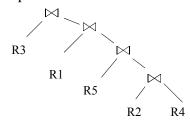
Types of Join Trees

• Bushy:



Types of Join Trees

• Right deep:



2

Dynamic Programming

- Given: a query R1 |x| R2 |x| ... |x| Rn
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

30

Dynamic Programming

- Idea: for each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for {R1}, {R2}, ..., {Rn}
 - Step 2: for $\{R1,R2\}$, $\{R1,R3\}$, ..., $\{Rn-1,Rn\}$

- ...

- Step n: for $\{R1, ..., Rn\}$
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a subquery

31

Dynamic Programming

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

Dynamic Programming

- Step 1: For each $\{R_i\}$ do:
 - $-\operatorname{Size}(\{R_i\}) = \operatorname{B}(R_i)$
 - $\operatorname{Plan}(\{R_i\}) = R_i$
 - $\text{Cost}(\{R_i\}) = (\text{cost of scanning } R_i)$

33

Dynamic Programming

- **Step i**: For each $Q \subseteq \{R_1, ..., R_n\}$ of cardinality i do:
 - Compute Size(Q) (later...)
 - For every pair of subqueries Q', Q''
 s.t. Q = Q' ∪ Q''
 compute cost(Plan(Q') |×| Plan(Q''))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan

34

Dynamic Programming

• Return Plan($\{R_1, ..., R_n\}$)

35

Dynamic Programming

To illustrate, we will make the following simplifications:

- $Cost(P_1 | x | P_2) = Cost(P_1) + Cost(P_2) + size(intermediate result(s))$
- Intermediate results:
 - If P_1 = a join, then the size of the intermediate result is $size(P_1)$, otherwise the size is 0
 - Similarly for P₂
- Cost of a scan = 0

Dynamic Programming

- Example:
- Cost(R5 |x| R7) = 0 (no intermediate results)
- Cost((R2 |×| R1) |×| R7)
 - $= \operatorname{Cost}(R2 | \times | R1) + \operatorname{Cost}(R7) + \operatorname{size}(R2 | \times | R1)$ $= \operatorname{circ}(R2 | \times | R1)$

= size(R2 \times R1)

37

Dynamic Programming

• Relations: R, S, T, U

• Number of tuples: 2000, 5000, 3000, 1000

• Size estimation: $T(A \times B) = 0.01 T(A) T(B)$

38

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5M	30k	(TU)S
RSTU	30M	60k+50k=110k	(RT)(SU)

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $R(A,B) |\times| S(B,C) |\times| T(C,D)$

Plan: $(R(A,B) | \times | T(C,D)) | \times | S(B,C)$ has a cartesian product – most query optimizers will not consider it

41

Rule-Based Optimizers

- *Extensible* collection of rules
 Rule = Algebraic law with a direction
- Algorithm for firing these rules
 Generate many alternative plans, in some order
 Prune by cost
- Volcano (later SQL Sever)
- Starburst (later DB2)

43

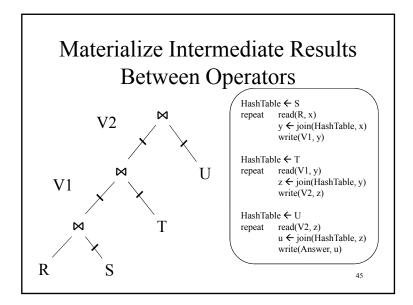
Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

42

Completing the Physical Query Plan

- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have ?
 - Are the input operand(s) sorted?
- Decide for each intermediate result:
 - To materialize
 - To pipeline



Materialize Intermediate Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan?
 - Cost =
- How much main memory do we need?
 - M=

46

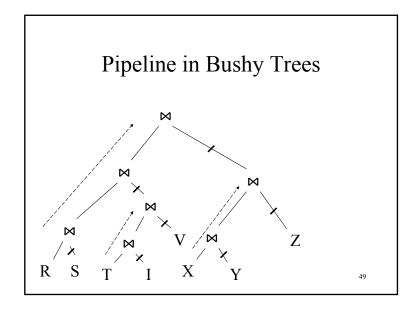
Pipeline Between Operators | MashTable1 \leftarrow S | HashTable2 \leftarrow T | HashTable3 \leftarrow U | repeat | read(R, x) | y \leftarrow join(HashTable1, x) | z \leftarrow join(HashTable3, z) | write(Answer, u) | | R | S | | 47

Pipeline Between Operators

Question in class

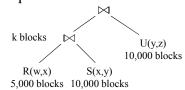
Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan?
 - Cost =
- How much main memory do we need?
 - M=



Example

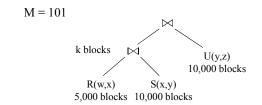
• Logical plan is:



• Main memory M = 101 buffers

50

Example

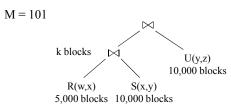


Naïve evaluation:

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

51

Example



Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we pipeline
- Cost so far: 3B(R) + 3B(S)

Example

$$M = 101$$

$$k \text{ blocks} \qquad \qquad U(y,z)$$

$$10,000 \text{ blocks}$$

$$R(w,x) \qquad S(x,y)$$

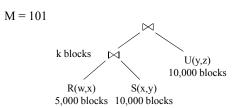
$$5,000 \text{ blocks} \qquad 10,000 \text{ blocks}$$

Continuing:

- How large are the 50 buckets on y? Answer: k/50.
- If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

52

Example



Continuing:

- If $50 < k \le 5000$ then send the 50 buckets in Step 3 to disk
 - Each bucket has size k/50 <= 100
- Step 4: partition U into 50 buckets
- · Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

54

Example

$$M = 101$$

$$k \text{ blocks} \qquad \qquad U(y,z)$$

$$10,000 \text{ blocks}$$

$$R(w,x) \qquad S(x,y)$$

$$5,000 \text{ blocks} \qquad 10,000 \text{ blocks}$$

Continuing:

- If k > 5000 then materialize instead of pipeline
- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

55

Example

Summary:

- If $k \le 50$,
- cost = 55,000
- If $50 < k \le 5000$, cost = 75,000 + 2k
- If k > 5000, cost = 75,000 + 4k

Size Estimation

The problem: Given an expression E, compute T(E) and V(E, A)

- This is hard without computing E
- Will 'estimate' them instead

57

Size Estimation

Estimating the size of a selection

- $S = \sigma_{A=c}(R)$
 - T(S) san be anything from 0 to T(R) V(R,A) + 1
 - Estimate: T(S) = T(R)/V(R,A)
 - When V(R,A) is not available, estimate T(S) = T(R)/10
- $S = \sigma_{A < c}(R)$
 - T(S) can be anything from 0 to T(R)
 - Estimate: T(S) = (c Low(R, A))/(High(R,A) Low(R,A))T(R)
 - When Low, High unavailable, estimate T(S) = T(R)/3

59

Size Estimation

Estimating the size of a projection

- Easy: $T(\Pi_L(R)) = T(R)$
- This is because a projection doesn't eliminate duplicates

58

Size Estimation

Estimating the size of a natural join, $R \times |A| S$

- When the set of A values are disjoint, then $T(R \mid \times \mid_A S) = 0$
- When A is a key in S and a foreign key in R, then $T(R \mid x|_A S) = T(R)$
- When A has a unique value, the same in R and S, then T(R |x|_A S) = T(R) T(S)

Size Estimation

Assumptions:

- <u>Containment of values</u>: if V(R,A) <= V(S,A), then the set of A values of R is included in the set of A values of S
 - Note: this indeed holds when A is a foreign key in R, and a key in S
- <u>Preservation of values</u>: for any other attribute B,
 V(R |×| A S, B) = V(R, B) (or V(S, B))

61

Size Estimation

Example:

- T(R) = 10000, T(S) = 20000
- V(R,A) = 100, V(S,A) = 200
- How large is $R \times A S$?

Answer: $T(R |\times|_A S) = 10000 \ 20000/200 = 1M$

63

Size Estimation

Assume $V(R,A) \leq V(S,A)$

- Then each tuple t in R joins *some* tuple(s) in S
 - How many?
 - On average T(S)/V(S,A)
 - t will contribute T(S)/V(S,A) tuples in $R \times |A|$
- Hence $T(R |\times|_A S) = T(R) T(S) / V(S,A)$

In general: $T(R \mid x|_A S) = T(R) T(S) / max(V(R,A),V(S,A))$

62

Size Estimation

Joins on more than one attribute:

• $T(R |x|_{A,B} S) =$

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

65

Histograms

Employee(ssn, name, salary, phone)

• Maintain a histogram on salary:

Salary:	020k	20k40k	40k60k	60k80k	80k100k	> 100k
Tuples	200	800	5000	12000	6500	500

• T(Employee) = 25000, but now we know the distribution

66

Histograms

Ranks(rankName, salary)

• Estimate the size of Employee $|\times|_{Salary}$ Ranks

En	nployee	020k	20k40k	40k60k	60k80k	80k100k	>100k
		200	800	5000	12000	6500	500

Ranks	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	8	20	40	80	100	2

67

Histograms

• Eqwidth

020	2040	4060	6080	80100
2	104	9739	152	3

• Eqdepth

044	4448	4850	5056	55100
2000	2000	2000	2000	2000