
1

Introduction to Database Systems
CSE 444

Lecture 21:
Query Execution

May 23-28, 2008

1

y ,

Outline

• Hash tables (13 4)• Hash-tables (13.4)
• Query execution: 15.1 – 15.5

2

Architecture of a Database Engine
SQL query

Parse Query

Select Logical Plan

Select Physical Plan

Query
optimization

Logical
plan

Physical

3

Query Execution

Physical
plan

Logical Algebra Operators

• Union intersection difference• Union, intersection, difference
• Selection σ
• Projection Π
• Join

D plicate elimination δ

4

• Duplicate elimination δ
• Grouping γ
• Sorting τ

2

Physical Operators

Will learn today and the following lectures:Will learn today and the following lectures:
• Join:

– Main-memory hash based join
– Block-based nested-loop join
– Partitioned hash-based join
– Merge-join

5

– Index-join
• Group-by / Duplicate-elimination:

–

Question in Class

Logical operator:Logical operator:
Product(pname, cname) Company(cname, city)

Propose three physical operators for the join, assuming
the tables are in main memory:

1.

6

1.
2.
3.

Question in Class
Product(pname, cname) Company(cname, city)oduc (p e, c e) Co p y(c e, c y)

• 1000000 products
• 1000 companies

How much time do the following physical operators take if the data
is in main memory ?

7

is in main memory ?

• Nested loop join time =
• Sort and merge = merge-join time =
• Hash join time =

Cost Parameters

The cost of an operation = total number of I/OsThe cost of an operation total number of I/Os
– result assumed to be delivered in main memory

Cost parameters:
• B(R) = number of blocks for relation R

8

• T(R) = number of tuples in relation R
• V(R, a) = number of distinct values of attribute a
• M = size of main memory buffer pool, in blocks

3

Cost Parameters

• Clustered table R:Clustered table R:
– Blocks consists only of records from this table
– B(R) << T(R)

• Unclustered table R:
– Its records are placed on blocks with other tables
– B(R) ≈ T(R)

9

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a)

Selection and Projection

Selection σ(R) projection Π(R)Selection σ(R), projection Π(R)
• Both are tuple-at-a-time algorithms
• Cost: B(R)

U

10

Input buffer Output bufferUnary
operator

Hash Tables

• Key data structure used in many operators• Key data structure used in many operators
• May also be used for indexes, as alternative to B+trees
• Recall basics:

– There are n buckets
– A hash function h(k) maps a key k to {0, 1, …, n-1}

St i b k t h(k) i t t d ith k k

11

– Store in bucket h(k) a pointer to record with key k
• Secondary storage: bucket = block, use overflow

blocks when needed

• Assume 1 bucket (block) stores 2 keys +

Hash Table Example

• Assume 1 bucket (block) stores 2 keys +
pointers

• h(e)=0
• h(b)=h(f)=1
• h(g)=2

e

b

f

0

1

12

• h(g) 2
• h(a)=h(c)=3

g

a

c

2

3

Here: h(x) = x mod 4

4

• Search for a:

Searching in a Hash Table

• Search for a:
• Compute h(a)=3
• Read bucket 3
• 1 disk access

e

b

f

0

1

13

g

a

c

2

3

• Place in right bucket if space

Insertion in Hash Table

• Place in right bucket, if space
• E.g. h(d)=2

e

b

f

0

1

14

g

d

a

c

2

3

• Create overflow block if no space

Insertion in Hash Table

Create overflow block, if no space
• E.g. h(k)=1

e

b

f

0

1 k

15

• More over-
flow blocks
may be needed

g

d

a

c

2

3

Hash Table Performance

• Excellent if no overflow blocks• Excellent, if no overflow blocks
• Degrades considerably when number of

keys exceeds the number of buckets (I.e.
many overflow blocks).

16

5

Main Memory Hash Join

Hash join: R SHash join: R S
• Scan S, build buckets in main memory
• Then scan R and join

• Cost: B(R) + B(S)

17

• Cost: B(R) + B(S)
• Assumption: B(S) <= M

Duplicate Elimination

Duplicate elimination δ(R)Duplicate elimination δ(R)
• Hash table in main memory

• Cost: B(R)
Ass mption: B(δ(R)) < M

18

• Assumption: B(δ(R)) <= M

Grouping

Grouping:Grouping:
Product(name, department, quantity)
γdepartment, sum(quantity) (Product)

Answer(department, sum)

19

Main memory hash table
Question: How ?

Nested Loop Joins

• Tuple-based nested loop R S• Tuple-based nested loop R S

for each tuple r in R do
for each tuple s in S do

if r and s join then output (r s)

20

• Cost: T(R) B(S) when S is clustered
• Cost: T(R) T(S) when S is unclustered

if r and s join then output (r,s)

6

Nested Loop Joins

• We can be much more cleverWe can be much more clever

• Question: how would you compute the join in the
following cases ? What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

21

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
for each block br of R do

for each tuple s in bs

22

for each tuple r in br do
if “r and s join” then output(r,s)

Block-Based Nested-loop Join

. . .
. . .

R & S
Hash table for block of S

(M-2 pages)

. . .

Join Result

23

Input buffer for R Output buffer

Block-Based Nested-loop Join

• Cost:• Cost:
– Read S once: cost B(S)
– Outer loop runs B(S)/(M-2) times, and each

time need to read R: costs B(S)B(R)/(M-2)
– Total cost: B(S) + B(S)B(R)/(M-2)

24

• Notice: it is better to iterate over the smaller
relation first

• R S: R=outer relation, S=inner relation

7

Index Based Join

• R S<>R S
• Assume S has an index on the join attribute

<>

for each tuple r in R do
lookup the tuple(s) s in S using the index
output (r s)

25

output (r,s)

Index Based Join

Cost (Assuming R is clustered):Cost (Assuming R is clustered):

• If index is clustered: B(R) + T(R)B(S)/V(S,a)
• If index is unclustered: B(R) + T(R)T(S)/V(S,a)

26

Index Based Selection

Selection on equality: σ (R)Selection on equality: σa=v(R)

• Clustered index on a: cost B(R)/V(R,a)

• Uncl stered inde on a: cost T(R)/V(R a)

27

• Unclustered index on a: cost T(R)/V(R,a)
– We have seen that this is like a join

Index Based Selection
• Example:

B(R) = 2000
T(R) = 100 000 cost of σ (R) = ?a p e:

• Table scan (assuming R is clustered):
– B(R) = 2,000 I/Os

• Index based selection:
– If index is clustered: B(R)/V(R,a) = 100 I/Os

T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) ?

28

If index is clustered: B(R)/V(R,a) 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Lesson: don’t build unclustered indexes when V(R,a) is
small !

8

Operations on Very Large Tables

• Partitioned hash algorithms

• Merge-sort algorithms

29

Partitioned Hash Algorithms

• Idea: partition a relation R into buckets on diskIdea: partition a relation R into buckets, on disk
• Each bucket has size approx. B(R)/M

Relation R
OUTPUT

2INPUT

1

hash
function

Partitions

1

2

1

2

30

M main memory buffers DiskDisk

function
h M-1

M-1

. . .
B(R)

• Does each bucket fit in main memory ?
–Yes if B(R)/M <= M, i.e. B(R) <= M2

Duplicate Elimination

• Recall: δ(R) = duplicate elimination• Recall: δ(R) = duplicate elimination
• Step 1. Partition R into buckets
• Step 2. Apply δ to each bucket (may read in

main memory)

31

• Cost: 3B(R)
• Assumption:B(R) <= M2

Grouping

• Recall: γ(R) = grouping and aggregation• Recall: γ(R) = grouping and aggregation
• Step 1. Partition R into buckets
• Step 2. Apply γ to each bucket (may read in

main memory)

32

• Cost: 3B(R)
• Assumption:B(R) <= M2

9

Partitioned Hash Join

R SR S
• Step 1:

– Hash S into M buckets
– send all buckets to disk

• Step 2
– Hash R into M buckets

33

– Send all buckets to disk
• Step 3

– Join every pair of buckets

Hash-Join
• Partition both relations using

hash fn h: R tuples in
partition i will only match S

Original
Relation OUTPUT

2INPUT

1

hash
function

h

Partitions

1

2

. . .
tuples in partition i.

Read in a partition

Partitions
of R & S

Hash table for partition
Si (< M-1 pages)

Join Result

hash

B main memory buffers DiskDisk

h M-1
M-1

. . .

34

of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Input buffer
for Ri

B main memory buffersDisk

Output
buffer

Disk

fn
h2

h2

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)• Cost: 3B(R) + 3B(S)
• Assumption: min(B(R), B(S)) <= M2

35

External Sorting

• Problem:
• Sort a file of size B with memory M
• Where we need this:

– ORDER BY in SQL queries
– Several physical operators

36

– Bulk loading of B+-tree indexes.
• Will discuss only 2-pass sorting, for when B < M2

10

External Merge-Sort: Step 1

• Phase one: load M bytes in memory sort• Phase one: load M bytes in memory, sort

.
M

37

DiskDisk Main memory

Runs of length M bytes

External Merge-Sort: Step 2

• Merge M – 1 runs into a new run
• Result: runs of length M (M – 1)≈ M2

.
Input 1

Input 2 Output

38

DiskDisk

.
Input M

. . . .
p

If B <= M2 then we are done

Main memory

Cost of External Merge Sort

• Read+write+read = 3B(R)()

• Assumption: B(R) <= M2

39

Duplicate Elimination

Duplicate elimination δ(R)Duplicate elimination δ(R)
• Idea: do a two step merge sort, but change

one of the steps

• Question in class: which step needs to be
h d d h

40

changed and how ?

• Cost = 3B(R)
• Assumption: B(δ(R)) <= M2

11

Grouping

Grouping: γ (R)Grouping: γa, sum(b) (R)
• Same as before: sort, then compute the

sum(b) for each group of a’s
• Total cost: 3B(R)
• Assumption: B(R) <= M2

41

• Assumption: B(R) < M

Merge-Join

Join R SJoin R S
• Step 1a: initial runs for R
• Step 1b: initial runs for S
• Step 2: merge and join

42

Merge-Join

Main memor
DiskDisk

.
Input M

Input 1

Input 2
. . . .

Output

43

Main memory

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
If B <= M2 then we are done

Two-Pass Algorithms Based on
Sorting

Join R SJoin R S
• If the number of tuples in R matching those

in S is small (or vice versa) we can compute
the join during the merge phase

• Total cost: 3B(R)+3B(S)

44

() ()
• Assumption: B(R) + B(S) <= M2

12

Summary of External Join
Algorithms

• Block Nested Loop: B(S) + B(R)*B(S)/M

• Index Join: B(R) + T(R)B(S)/V(S,a)

• Partitioned Hash: 3B(R)+3B(S);
min(B(R) B(S)) <= M2

45

– min(B(R),B(S)) <= M2

• Merge Join: 3B(R)+3B(S)
– B(R)+B(S) <= M2

