Introduction to Database Systems
CSE 444

Lectures 19:
Data Storage and Indexes

May 16, 2008

Outline

* Representing data elements (12)
* Index structures (13.1, 13.2)
» B-trees (13.3)

Files and Tables

» A disk = a sequence of blocks

A file = a subsequence of blocks, usually
contiguous

» Need to store tables/records/indexes in
files/block

Representing Data Elements

» Relational database elements:

CREATE TABLE Product (

pid INT PRIMARY KEY,

name CHAR(20),

description VARCHAR(200),

maker CHAR(10) REFERENCES Company(name)
)

« Attuple is represented as a record
e The table is a sequence of records

5/15/2008

Issues

Represent attributes inside the records
» Represent the records inside the blocks

Record Formats: Fixed Length

pid name descr maker

«~—L1— L2 L3 L4

\

Base address (B) Address = B+L1+L2

« Information about field types same for all
records in a file; stored in system catalogs.

« Finding i’th field requires scan of record.

* N

ote the importance of schema information!

Record Header

To schema
Tlengt?)id name descr maker
]l |<—L1—> L2 L3 L4
headerl
timestamp

Need the header because:
*The schema may change

for a while new+old may coexist
*Records from different relations may coexist

Variable Length Records

Other header information

header pid name descr maker

~—L1— L2 L3 L4

length

Place the fixed fields first: F1

Then the variable length fields: F2, F3, F4
Null values take 2 bytes only

Sometimes they take 0 bytes (when at the end)

5/15/2008

Storing Records in Blocks

» Blocks have fixed size (typically 4k — 8k)

BLOCK

mR4 s | R R

BLOB

 Binary large objects

Supported by modern database systems

» E.g. images, sounds, etc.

Storage: attempt to cluster blocks together

CLOB = character large object
 Supports only restricted operations

10

File Types

 Unsorted (heap)

* Sorted (e.g. by pid)

11

Modifications: Insertion

* File is unsorted: add it to the end (easy ©)

* File is sorted:

— Is there space in the right block ?
* Yes: we are lucky, store it there

— Is there space in a neighboring block ?
* Look 1-2 blocks to the left/right, shift records

— If anything else fails, create overflow block

12

5/15/2008

Overflow Blocks

Block,., Block, Block,,,

Overflow

 After a while the file starts being dominated
by overflow blocks: time to reorganize

13

Modifications: Deletions

* Free space in block, shift records
» May be able to eliminate an overflow block

» Can never really eliminate the record,
because others may point to it
— Place a tombstone instead (a NULL record)

[How can we point to a record in an RDBMS ?] 14

Modifications: Updates

« If new record is shorter than previous, easy ©

« Ifitis longer, need to shift records, create
overflow blocks

15

Pointers
Logical pointer to a record consists of:
 Logical block number
» An offset in the block’s header

We use pointers in Indexes and in Log entries

[Note: review what a pointer in C is] 6

5/15/2008

Indexes

» Anindex on a file speeds up selections on the
search key fields for the index.

— Any subset of the fields of a relation can be the search
key for an index on the relation.

— Search key is not the same as key (minimal set of fields
that uniquely identify a record in a relation).
* An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value k.

Index Classification

* Clustered/unclustered

— Clustered = records close in the index are close in the data; same as
saying that the table is ordered by the index key

— Unclustered = records close in the index may be far in the data
 Primary/secondary:
— Interpretation 1:
« Primary = is over attributes that include the primary key
« Secondary = cannot reorder data
— Interpretation 2: means the same as clustered/unclustured

* B+ tree or Hash table

18

Clustered Index

 File is sorted on the index attribute
* Only one per table

10
20

20

30 —

30
40

20 —]

50

/I]

]

60 50

60

70
80

70
80 19

Unclustered Index

 Several per table

10 20
10 30
20

20 — 30

20

10
20

10
30 20

/

5/15/2008

Clustered vs. Unclustered Index

Data entrles

-- - Dataentries

AEM oo ﬁ”%\ﬁ@?‘%m

DataRecords Data Records

CLUSTERED UNCLUSTERED

B+ Trees

 Search trees
e ldeain B Trees:

— make 1 node = 1 block
* ldea in B+ Trees:

— Make leaves into a linked list (range queries are
easier)

22

B+ Trees Basics

» Parameter d = the degree
» Each node has >= d and <= 2d keys (except root)

30 [120 [240

AN N
TN\
Keysk <30 Keys 30<=k<120 Keys 120<=k<240

 Each leaf has >=d and <= 2d keys:

Keys 240<=k

40 | 50 | 60
|] | | T Nextleaf
TN

23

B+ Tree Example
d=2

Find the key 40

wio T T 1

20 60| | 100 | 120 | 140 |

| [| NE NS

2054060 \
10 | 15| 18 |

zo|3o|40|50 60|65| 80|85|90|

INEENNNET
8

PR o

24

5/15/2008

B+ Tree Design

How large d ?

Example:

— Key size = 4 bytes

— Pointer size = 8 bytes

— Block size = 4096 byes

2d x4 + (2d+1) x 8 <= 4096

d=170

25

Searching a B+ Tree

» Exact key values:
— Start at the root
— Proceed down, to the leaf

Select name
From people
Where age =25

* Range queries: Select name
_ From people
As above . Where 20 <= age
— Then sequential traversal and age <= 30

26

B+ Trees in Practice

» Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
» Typical capacities:
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
 Can often hold top levels in buffer pool:
— Level 1= 1page = 8 Kbytes
— Level2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 MBytes

Insertion in a B+ Tree

Insert (K, P)

¢ Find leaf where K belongs, insert

 If no overflow (2d keys or less), halt

 If overflow (2d+1 keys), split node, insert in parent:

parent

parent
K3

KL [K2 | K3 [Ka [Ks Kt k2| | Ke [ks| |

po[pi] P2 [P [paps| = [PofPi]pa] T |[ra]pPalps |]

« If leaf, keep K3 too in right node
¢ When root splits, new root has 1 key only

28

5/15/2008

Insertion in a B+ Tree
Insert K=19

20 [60| | 100 | 120 | 140 |

NN NN

\\

10|15|18| 20|30|40|50 60|65| 80|85|90|

[t LL&LL b

29

Insertion in a B+ Tree

After insertion

oo [|
L []
20 60| | 100 | 120 | 140 |
SO J*X
10|15|18|19 20|30|40|50 60|65| 80|85|90|

—4— 4+

bl b2

30

Insertion in a B+ Tree

Now insert 25

20 [60] | 100 | 120 | 140 |

NN L J L

\

10|15|18|19 20|30|40|50 60|65| 80|85|90|

"’||| 1

s LLL;LL ot

31

Insertion in a B+ Tree

After insertion

oo [|
L []
20 60| | 100 | 120 | 140 |
Bwm— **{\\
10|15|18|19 zo|25|30|40|50 60|65| 80|85|90|

4+ 4

i

32

5/15/2008

Insertion in a B+ Tree

But now have to split !

oo [|
L [
20 [60| | 100 | 120 | 140 |
N J L L
10|15|18|19 20|25|3o|40|50 eo|es| 80|85|90|

1

4+

LL\EELLL\E;L; b

33

Insertion in a B+ Tree
After the split

20 [30 60 | 100 | 120 | 140 |

INENEN ST

e

10|15|18|19 20|25‘ | 30|40|50| 60|65| 80|85|90|

ININE S NNEEE; 2N AE

v LL so

34

Deletion from a B+ Tree

Delete 30
oo [|
L []
20 [30 | 60 | 100 | 120 | 140 |
10|15‘1s|19 20|25| | 30|4o‘50| 60‘65 80‘85|90|

1 R

iNib EL& i

Deletion from a B+ Tree
After deleting 30

May change to 80 | | |

40, or not /| \L | |

20 [30 60 | 100 | 120 | 140 |

NN Ll [
10|15|18|19 20|25‘ | 4o|50| | 60|65| 80|85|90|

ININESH AE

Lokl ¢ \LL i

36

5/15/2008

Deletion from a B+ Tree

Now delete 25

Deletion from a B+ Tree

After deleting 25
Need to rebalance

oo | [|
S
20 [30 | 60 | 100 | 120 | 140 |
INENEN J L [L
10|49 20|25| | 40|50‘ | 60‘65| 80 |85 [90 |
I | HAES

LLQEQL|‘\\EDEWEQ

37

20 [30 60 | 100 | 120 | 140 |
m N Sl
10|15|18|19 20| ‘ | 40|5o| | 60|65| 80|85|90|
INIRESH | A

e ‘\\huhmmé

38

Deletion from a B+ Tree

Deletion from a B+ Tree

After deleting 40
Rotation not possibl

Need to merge nodes
SN

Now delete 40
oo [|
L []
19 | 30| 60 | 100 | 120 | 140 |
/ NN Ll [
10|15‘18| 19|20| | 40|50‘ | 60‘65| 80‘85|90|
INEEZHA | JINEES AE

v/ ‘\\hukmaé

39

19 [30] 60 | 100 | 120 | 140 |
NN Ll [
10|15|18| ‘;—19|20‘ | 50| | | \60|65| 80|85|90|
INNEELAENE TNEEE TS A

N

VRSV

40

5/15/2008

10

5/15/2008

Deletion from a B+ Tree Summary on B+ Trees
Final tree
o] [| » Default index structure on most DBMS
SN * Very effective at answering “point’ queries:
weo| | 100 | 120[140 | roductName = ‘gizmo’
. T L prot gt
/ \ Effective for range queries:
50 < price AND price < 100
10|15‘18| 19|20|50| 60‘65| | 80‘85|90| . . .
T 00 LTI NESEIEES * Less effective for multirange:
/ 50 < price < 100 AND 2 < quant < 20
[s0][o] [es][e0] [8s] [o0] . Y

11

