
5/10/2008

1

Introduction to Database Systems
CSE 444

Lectures 17-18:
Concurrency Control

May 12-14, 2008

1

y ,

Outline

• Serial and Serializable Schedules (18 1)• Serial and Serializable Schedules (18.1)
• Conflict Serializability (18.2)
• Locks (18.3)
• Multiple lock modes (18.4)
• The tree protocol (18 7)

2

• The tree protocol (18.7)
• Concurrency control by timestamps 18.8
• Concurrency control by validation 18.9

The Problem

• Multiple transactions are running concurrently• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How can we prevent unwanted interference ?

3

p

The SCHEDULER is responsible for that

Three Famous Anomalies

What can go wrong if we didn’t haveWhat can go wrong if we didn t have
concurrency control:

• Dirty reads
• Lost updates

4

• Lost updates
• Inconsistent reads

Many other things may go wrong, but have no names

5/10/2008

2

Dirty Reads

T1: WRITE(A)
T2: READ(A)

5

T1: ABORT

Lost Update

T1: READ(A)

T1: A := A+5
T2: READ(A);

T2: A := A*1.3

6

T1: WRITE(A)
T2: A : A 1.3

T2: WRITE(A);

Inconsistent Read

T1: A := 20; B := 20;
T1: WRITE(A)

T2: READ(A);
T2: READ(B);

7

T1: WRITE(B)

Schedules

Given multiple transactions:Given multiple transactions:
• A schedule is a sequence of interleaved

actions from all transactions
• A serial schedule is one whose actions

consist of all those of one transaction,

8

,
followed by all those of another transaction,
etc.

5/10/2008

3

Example

T1 T2T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)

9

(,) (,)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A Serial Schedule
T1 T2T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A)

10

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Serializable Schedule

• A schedule is serializable if it is equivalent• A schedule is serializable if it is equivalent
to a serial schedule

11

A Serializable Schedule
T1 T2
READ(A, t)(,)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100

12

t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice: this is NOT a serial schedule

5/10/2008

4

A Non-Serializable Schedule
T1 T2
READ(A t)READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)

13

s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Ignoring Details

• Sometimes transactions’ actions maySometimes transactions actions may
commute accidentally because of specific
updates
– Serializability is undecidable !

• The scheduler shouldn’t look at the
transactions’ details

14

transactions details
• Assume worst case updates, only care about

reads r(A) and writes w(A)

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

15

Conflict Serializability

Conflicts:Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

16

ji() j()y i, j

jwi(X); rj(X)Read/write by Ti, Tj to same element

jri(X); wj(X)

5/10/2008

5

Conflict Serializability
• A schedule is conflict serializable if it can

be transformed into a serial schedule by a
series of swappings of adjacent non-
conflicting actions

Example:

17
r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

• Any conflict serializable schedule is also a• Any conflict serializable schedule is also a
serializable schedule (why ?)

• The converse is not true, even under the
“worst case update” assumption

Lost
write

18

p p

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Equivalent,
but can’t swap

The Precedence Graph Test

Is a schedule conflict-serializable ?Is a schedule conflict-serializable ?
Simple test:
• Build a graph of all transactions Ti
• Edge from Ti to Tj if Ti makes an action that

conflicts with one of Tj and comes first

19

j

• The test: if the graph has no cycles, then it
is conflict serializable !

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

AB

20

1 2 3

This schedule is conflict-serializable

5/10/2008

6

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

A
B

21

1 2 3

This schedule is NOT conflict-serializable

B

Scheduler

• The scheduler is the module that schedules• The scheduler is the module that schedules
the transaction’s actions, ensuring
serializability

• How? Three techniques:
– Locks

22

– Time stamps
– Validation

Locking Scheduler

Simple idea:Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If the lock is taken by another transaction

23

• If the lock is taken by another transaction,
then wait

• The transaction must release the lock(s)

Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

24

5/10/2008

7

Example
T1 T2
L1(A); READ(A, t)
t := t+100t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)

25

t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

The scheduler has ensured a conflict-serializable schedule

Example
T1 T2
L1(A); READ(A, t)
t t+100t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2

26

WRITE(B,s); U2(B);
L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability!

Two Phase Locking (2PL)

The 2PL rule:The 2PL rule:

• In every transaction, all lock requests must
preceed all unlock requests

27

• This ensures conflict serializability !
(why?)

Example: 2PL transactcions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100t : t 100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t t+100

28

t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable

5/10/2008

8

Deadlock

• Trasaction T waits for a lock held by T ;• Trasaction T1 waits for a lock held by T2;
• But T2 waits for a lock held by T3;
• While T3 waits for
• . . .
• . . .and T73 waits for a lock held by T1 !!

29

Could be avoided, by ordering all elements (see
book); or deadlock detection plus rollback

Lock Modes

• S = Shared lock (for READ)S Shared lock (for READ)
• X = exclusive lock (for WRITE)
• U = update lock

– Initially like S
– Later may be upgraded to X

30

• I = increment lock (for A := A + something)
– Increment operations commute

• READ CHAPTER 18.4 !

The Locking Scheduler

Task 1:Task 1:
add lock/unlock requests to transactions

• Examine all READ(A) or WRITE(A)
actions

• Add appropriate lock requests

31

pp p q
• Ensure 2PL !

The Locking Scheduler

Task 2:Task 2:
execute the locks accordingly

• Lock table: a big, critical data structure in a DBMS !
• When a lock is requested, check the lock table

– Grant, or add the transaction to the element’s wait list

• When a lock is released, re-activate a transaction from its
it li t

32

wait list
• When a transaction aborts, release all its locks
• Check for deadlocks occasionally

5/10/2008

9

The Tree Protocol

• An alternative to 2PL for tree structures• An alternative to 2PL, for tree structures
• E.g. B-trees (the indexes of choice in

databases)

33

The Tree Protocol

Rules:Rules:
• The first lock may be any node of the tree
• Subsequently, a lock on a node A may only be

acquired if the transaction holds a lock on its
parent B

• Nodes can be unlocked in any order (no 2PL

34

y (
necessary)

The tree protocol is NOT 2PL, yet ensures conflict-
serializability !

Timestamps

Every transaction receives a unique timestampEvery transaction receives a unique timestamp
TS(T)

Could be:

35

• The system’s clock
• A unique counter, incremented by the

scheduler

Timestaps

The timestamp order defines

Main invariant:

36

the searialization order of the transaction

5/10/2008

10

Timestamps

Associate to each element X:Associate to each element X:
• RT(X) = the highest timestamp of any

transaction that read X
• WT(X) = the highest timestamp of any

transaction that wrote X
() h i bi if h

37

• C(X) = the commit bit: says if the
transaction with highest timestamp that
wrote X commited

These are associated to each page X in the buffer pool

Main Idea
For any two conflicting actions, ensure that

their order is the serialized order:their order is the serialized order:
In each of these cases
• wU(X) . . . rT(X)
• rU(X) . . . wT(X)
• wU(X) wT(X)

Read too
late ?

Write too
late ?

38

wU(X) . . . wT(X)
Check that TS(U) < TS(T)

When T wants to read X, rT(X), how do we
know U, and TS(U) ?

No problem
(WHY ??)

Details

Read too late:Read too late:
• T wants to read X, and TS(T) < WT(X)

START(T) … START(U) … wU(X) . . . rT(X)

39
Need to rollback T !

Details

Write too late:Write too late:
• T wants to write X, and

WT(X) < TS(T) < RT(X)

START(T) … START(U) … rU(X) . . . wT(X)

40

Need to rollback T !

Why do we check WT(X) < TS(T) ??

5/10/2008

11

Details

Write too late but we can still handle it:Write too late, but we can still handle it:
• T wants to write X, and

TS(T) < RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)

41

Don’t write X at all !
(but see later…)

More Problems

Read dirty data:Read dirty data:
• T wants to read X, and WT(X) < TS(T)
• Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

42

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=1, then T needs to wait for it to become 0

More Problems

Write dirty data:Write dirty data:
• T wants to write X, and WT(X) > TS(T)
• Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

43

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=1, then T needs to wait for it to become 0

Timestamp-based Scheduling

When a transaction T requests r(X) or w(X)When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X),
C(X), and decides one of:

• To grant the request, or
llb k (d i h l

44

• To rollback T (and restart with later
timestamp)

• To delay T until C(X) = 0

5/10/2008

12

Timestamp-based Scheduling

RULES:RULES:
• There are 4 long rules in the textbook, on

page 974
• You should be able to understand them, or

even derive them yourself, based on the

45

y ,
previous slides

• Make sure you understand them !

READING ASSIGNMENT: 18.8.4

Multiversion Timestamp

• When transaction T requests r(X)When transaction T requests r(X)
but WT(X) > TS(T),
then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

TS(X) > TS(X) > TS(X) >

46

• Let T read an older version, with appropriate
timestamp

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details

• When wT(X) occurs create a new version denotedWhen wT(X) occurs create a new version, denoted
Xt where t = TS(T)

• When rT(X) occurs, find a version Xt such that
t < TS(T) and t is the largest such

• WT(Xt) = t and it never changes
• RD(Xt) must also be maintained, to reject certain

47

(t) j
writes (why ?)

• When can we delete Xt: if we have a later version
Xt1 and all active transactions T have TS(T) > t1

Tradeoffs
• Locks:oc s:

– Great when there are many conflicts
– Poor when there are few conflicts

• Timestamps
– Poor when there are many conflicts (rollbacks)
– Great when there are few conflicts

C i

48

• Compromise
– READ ONLY transactions → timestamps
– READ/WRITE transactions → locks

5/10/2008

13

Concurrency Control by
Validation

• Each transaction T defines a read set RS(T) and a write setEach transaction T defines a read set RS(T) and a write set
WS(T)

• Each transaction proceeds in three phases:
– Read all elements in RS(T). Time = START(T)
– Validate (may need to rollback). Time = VAL(T)
– Write all elements in WS(T). Time = FIN(T)

49

Main invariant: the serialization order is VAL(T)

Avoid rT(X) - wU(X) Conflicts

START(U) VAL(U) FIN(U)

U: Read phase Validate Write phase

START(U) () ()

T: Read phase Validate ?
conflicts

50

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

Avoid wT(X) - wU(X) Conflicts

START(U) VAL(U) FIN(U)

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?
conflicts

51

START(T)
VAL(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

Final comments

• Locks and timestamps: SQL Server, DB2

• Validation: Oracle

52

(more or less)

