
5/4/2008

1

Introduction to Database Systems
CSE 444

L 14Lecture 14:
Transactions in SQL

(and a bit about disk storage)

May 5, 2008

1

y ,

Transactions

• Major component of database systemsMajor component of database systems
• Critical for most applications; arguably

more so than SQL

• Turing awards to database researchers:

2

– Charles Bachman 1973
– Edgar Codd 1981 for inventing relational dbs
– Jim Gray 1998 for inventing transactions

Why Do We Need Transactions

• Concurrency control• Concurrency control

• Recovery

3

In the following examples, think of a transaction as meaning a procedure.
A transaction commits when it ends successfully.
A transaction rolls back when it aborts.

Concurrency control:
Three Famous anomalies

• Dirty readty ead
– T reads data written by T’ while T’ has not committed
– What can go wrong: T’ writes more data (which T has

already read), or T’ aborts

• Lost update
– Two tasks T and T’ both modify the same data

T d T’ b h i

4

– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’

5/4/2008

2

Dirty Reads

Client 1:
/* f $ f */

Client 2:
/* transfer $100 from account 1 to account 2 */

If Account1.balance > 100
then Account1.balance = Account1.balance - 100

Account2.balance = Account2.balance + 100
COMMIT

else ROLLBACK

/* Compute total amount */

X = Account1.balance;
Y = Account2.balance;

Z = X + Y;
P i (Z)

5

Print(Z);
COMMIT

What goes wrong ?

Dirty Reads

Client 1:
/* f $ f */

Client 2:
/* transfer $100 from account 1 to account 2 */

/* tentatively move money into account 2 */
Account2.balance = Account2.balance + 100

If Account1.balance > 100
then Account1.balance = Account1.balance - 100

COMMIT
else /* oops: remove $100 from Account 2 */

/* withdraw $100 */

If Account2.balance > 100
then Account2.balance =

Account2.balance - 100;
DISPENSE MONEY
COMMIT

else ROLLBACK

6

else / oops: remove $100 from Account 2 /
Account2.balance = Account2.balance - 100
ROLLBACK

What goes wrong ?Not needed
(done by

ROLLBACK)

Lost Updates

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

7

Two different users attempt to apply a discount.
Will it work ?

Inconsistent Read

Client 1:

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

Client 2:

SELECT sum(quantity)
FROM Product

8Note: this is a form of dirty read

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

5/4/2008

3

Protection against crashes

Client 1:

UPDATE Products
SET quantity = quantity + 5
WHERE product = ‘gizmo’

Crash !

9What’s wrong ?

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Definition
• A transaction = one or more operations, which reflects a p ,

single real-world transition
– In the real world, this happened completely or not at all

• Examples
– Transfer money between accounts
– Purchase a group of products
– Register for a class (either waitlist or allocated)

10

• If grouped in transactions, all problems in previous slides
disappear

Transactions in SQL

• In “ad hoc” SQL:• In ad-hoc SQL:
– Default: each statement = one transaction

• In a program:
START TRANSACTION

May be omitted:
first SQL query

starts txn

11

[SQL statements]
COMMIT or ROLLBACK (=ABORT)

starts txn

Revised Code
Client 1: START TRANSACTION

UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’
COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET P i P i *0 5

12

SET Price = Price*0.5
WHERE pname=‘Gizmo’
COMMIT

Now it works like a charm

5/4/2008

4

Transaction Properties
ACID

• Atomicto c
– State shows either all the effects of transaction, or none

of them
• Consistent

– Transaction moves from a state where integrity holds,
to another where integrity holds

• Isolated

13

– Effect of transactions is the same as transactions
running one after another (ie looks like batch mode)

• Durable
– Once a transaction has committed, its effects remain in

the database

ACID: Atomicity

• Two possible outcomes for a transaction• Two possible outcomes for a transaction
– It commits: all the changes are made
– It aborts: no changes are made

• That is, transaction’s activities are all or

14

That is, transaction s activities are all or
nothing

ACID: Consistency

• The state of the tables is restricted by integrityThe state of the tables is restricted by integrity
constraints
– Account number is unique
– Stock amount can’t be negative
– Sum of debits and of credits is 0

• Constraints may be explicit or implicit

15

• How consistency is achieved:
– Programmer makes sure a transaction takes a consistent

state to a consistent state
– The system makes sure that the transaction is atomic

ACID: Isolation

• A transaction executes concurrently with• A transaction executes concurrently with
other transaction

• Isolation: the effect is as if each transaction
executes in isolation of the others

16

5/4/2008

5

ACID: Durability

• The effect of a transaction must continue to• The effect of a transaction must continue to
exists after the transaction, or the whole
program has terminated

• Means: write data to disk (stable storage)

17

(g)

ROLLBACK

• If the app gets to a place where it can’t• If the app gets to a place where it can t
complete the transaction successfully, it can
execute ROLLBACK

• This causes the system to “abort” the
transaction

18

– The database returns to the state without any of
the previous changes made by activity of the
transaction

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)User changes their mind (ctl-C /cancel)
• Explicit in program, when application

program finds a problem
– e.g. when qty on hand < qty being sold

• System-initiated abort

19

– System crash
– Housekeeping

• e.g. due to timeouts

READ-ONLY Transactions
Client 1: START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT iSELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY Makes it

20

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

Makes it
faster

5/4/2008

6

Isolation Levels in SQL
1. “Dirty reads”y

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

21

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions (default):
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Isolation Level: Dirty Reads
function AllocateSeat(%request)

SET ISOLATION LEVEL READ UNCOMMITED
Plane seat
ll ti SET ISOLATION LEVEL READ UNCOMMITED

START TRANSACTION

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

If (x == 1) /* occupied */ ROLLBACK

allocation

What can go
wrong ?

22

If (x 1) / occupied / ROLLBACK

UPDATE Seat
SET occupied = 1
WHERE Seat.number = %request

COMMIT

What can go
wrong if only
the function
AllocateSeat
modifies Seat ?

function TransferMoney(%amount, %acc1, %acc2)

START TRANSACTION

Let x = SELECT Account.balance
FROM Account
WHERE Account.number = %acc1

If (x < %amount) ROLLBACK

UPDATE Account
SET balance = balance+%amount
WHERE Account.number = %acc2

Are dirty reads
OK here ?

What if we
switch the

23

UPDATE Account
SET balance = balance-%amount
WHERE Account.number = %acc1

COMMIT

switch the
two updates ?

Isolation Level: Read Committed

SET ISOLATION LEVEL READ COMMITEDStronger than SET ISOLATION LEVEL READ COMMITED

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* More stuff here */

Stronger than
READ UNCOMMITTED

It is possible
to read twice,
and get different

l

24

Let y = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* we may have x ≠ y ! */

values

5/4/2008

7

Isolation Level: Repeatable Read

SET ISOLATION LEVEL REPEATABLE READStronger than SET ISOLATION LEVEL REPEATABLE READ

Let x = SELECT Account.amount
FROM Account
WHERE Account.number = ‘555555’

/* More stuff here */

Stronger than
READ COMMITTED

May see incompatible
values:

25

Let y = SELECT Account.amount
FROM Account
WHERE Account.number = ‘777777’

/* we may have a wrong x+y ! */

another txn transfers
from acc. 55555 to
77777

Isolation Level: Serializable

SET ISOLATION LEVEL SERIALIZABLE

. . . .

Strongest level

Default

26

Default

WILL STUDY IN DETAILS IN A WEEK

The Mechanics of Disk
Mechanical characteristics: Spindle

Cylinder

• Rotation speed (5400RPM)
• Number of platters (1-30)
• Number of tracks (<=10000)
• Number of bytes/track(105)

p

Disk head Tracks

Sector

27

Platters
Arm movement

Arm assembly

Unit of read or write:
disk block

Once in memory:
page

Typically: 4k or 8k or 16k

Disk Access Characteristics
• Disk latency = time between when command is issued and s ate cy t e betwee w e co a d s ssued a d

when data is in memory

• Disk latency = seek time + rotational latency
– Seek time = time for the head to reach cylinder

• 10ms – 40ms
– Rotational latency = time for the sector to rotate

R t ti ti 10

28

• Rotation time = 10ms
• Average latency = 10ms/2

• Transfer time = typically 40MB/s
• Disks read/write one block at a time

5/4/2008

8

RAID
Several disks that work in parallelSeve a d s s t at wo pa a e
• Redundancy: use parity to recover from disk failure
• Speed: read from several disks at once

Various configurations (called levels):
• RAID 1 = mirror
• RAID 4 = n disks + 1 parity disk

29

RAID 4 n disks + 1 parity disk
• RAID 5 = n+1 disks, assign parity blocks round robin
• RAID 6 = “Hamming codes”

Buffer Management in a DBMS
Page Requests from Higher Levels

BUFFER POOL
READ
WRITE

MAIN MEMORY

DISK

disk page

free frame

choice of frame dictated

INPUT
OUTUPT

30

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained

DB
choice of frame dictated
by replacement policy

Buffer Manager

Needs to decide on page replacement policyp g p p y

• LRU
• Clock algorithm

Both work well in OS, but not always in DB

31

Enables the higher levels of the DBMS to assume that the
needed data is in main memory.

Least Recently Used (LRU)

• Order pages by the time of last accessed• Order pages by the time of last accessed
• Always replace the least recently accessed

P5, P2, P8, P4, P1, P9, P6, P3, P7

32

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx

5/4/2008

9

Buffer Manager

Why not use the Operating System for the task??

Main reason: need fine grained control for transactions

Other reasons:
- DBMS may be able to anticipate access patterns
- Hence, may also be able to perform prefetching

33

, y p p g
- DBMS needs the ability to force pages to disk,
for recovery purposes

Transaction Management and the
Buffer Manager

The transaction manager operates on theThe transaction manager operates on the
buffer pool

• Recovery: ‘log-file write-ahead’, then
careful policy about which pages to force to
disk

34

• Concurrency control: locks at the page
level, multiversion concurrency control

Will discuss details during the next few lectures

