Introduction to Database Systems CSE 444

Lectures 8 & 9 Database Design

April 16 & 18, 2008

Outline

• The relational data model: 3.1

• Functional dependencies: 3.4

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

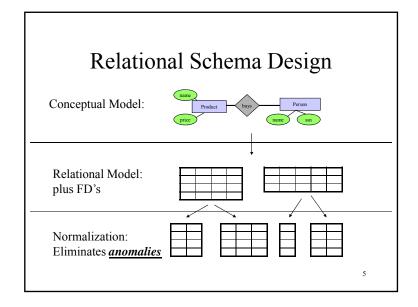
• A database schema is in First Normal Form Student if all tables are flat

Student

Name	GPA	Courses		
Alice	3.8	Math DB OS		
Bob	3.7	DB OS		
Carol	3.9	Math OS		

Alice 3.7

Takes Course Math Bob OS



Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Update anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

6

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

• Redundancy = repeated data

• Update anomalies = Fred moves to "Bellevue"

• Deletion anomalies = Joe deletes his phone number:

what is his city?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
/	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies are gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how?)
- Easy to delete all Joe's phone numbers (how?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its *functional dependencies*
- Use them to design a better relational schema

9

Functional Dependencies

- A form of constraint
 - hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

10

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

$$B_1, B_2, ..., B_m$$

Formally:

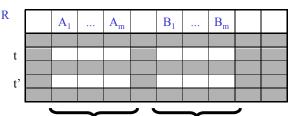
$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

1

When Does an FD Hold

Definition: $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if:

 $\forall t,t' \in R, (t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)$



if t, t' agree here then t, t' agree here

Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

13

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position → Phone

14

Example

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

but not Phone → Position

15

Example

FD's are constraints:

- On some instances they hold
- On others they don't

name → color category → department color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs?

Example

name → color category → department color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

What about this one?

17

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find *all* FDs, then look for the bad ones

19

An Interesting Observation

If all these FDs are true:

name → color category → department color, category → price

Then this FD also holds:

name, category → price

Why??

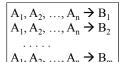
18

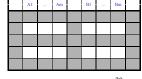
Armstrong's Rules (1/3)

 $A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$

Is equivalent to

Splitting rule and Combing rule





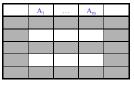
Armstrong's Rules (1/3)

 $A_1, A_2, ..., A_n \rightarrow A_i$

Trivial Rule

where i = 1, 2, ..., n

Why?



1

Armstrong's Rules (1/3)

Transitive Closure Rule

If
$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

and
$$B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$$

then $A_1, A_2, ..., A_n \rightarrow C_1, C_2, ..., C_p$

Why?

22

	A_1	 A _m	B_1	 B _m	C_1	 C_p	

23

Example (continued)

Start from the following FDs:

1. name → color

2. category → department

3. color, category → price

Infer the following FDs:

<u> </u>	
Inferred FD	Which Rule did we apply?
4. name, category → name	
5. name, category → color	
6. name, category → category	
7. name, category → color, category	
8. name, category → price	

Example (continued)

Answers:

1. name \rightarrow color 2. category → department 3. color, category → price

Inferred FD	Which Rule did we apply?
4. name, category → name	Trivial rule
5. name, category → color	Transitivity on 4, 1
6. name, category → category	Trivial rule
7. name, category → color, category	Split/combine on 5, 6
8. name, category → price	Transitivity on 3, 7

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$

The **closure**, $\{A_1, ..., A_n\}^+$ = the set of attributes B s.t. $A_1, ..., A_n \rightarrow B$

Example:

name → color category → department color, category → price

Closures:

 $name^+ = \{name, color\}$ {name, category} + = {name, category, color, department, price} $color^+ = \{color\}$

Closure Algorithm

 $X=\{A1, ..., An\}.$

Repeat until X doesn't change **do**:

if $B_1, ..., B_n \rightarrow C$ is a FD and $B_1, ..., B_n$ are all in X

Example:

name \rightarrow color category → department color, category → price

 $\{\text{name, category}\}^+ =$ { name, category, color, department, price }

then add C to X.

Hence: name, category → color, department, price

Example

In class:

$$\begin{array}{c} R(A,B,C,D,E,F) \\ A, D \rightarrow E \\ B \rightarrow D \end{array}$$

 $B \rightarrow D$ $A, F \rightarrow B$

Compute $\{A,B\}^+ X = \{A, B, B\}$

Compute $\{A, F\}^+$ $X = \{A, F,$

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $X \to A$
 - Compute X⁺
 - Check if $A \in X^+$

29

Another Example

• Enrollment(student, major, course, room, time)

student → major major, course → room course → time

What else can we infer ? [in class, or at home]

31

Using Closure to Infer ALL FDs

Example:

 $\begin{array}{c}
A, B \rightarrow C \\
A, D \rightarrow B \\
B \rightarrow D
\end{array}$

Step 1: Compute X⁺, for every X:

A+=A, B+=BD, C+=C, D+=D AB+=ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD

 $ABC+ = ABD+ = ACD^+ = ABCD$ (no need to compute - why?)

 $BCD^{+} = BCD$, $ABCD^{+} = ABCD$

Step 2: Enumerate all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

 $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$

Keys

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
 - i.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X⁺ for all sets X
- If X^+ = all attributes, then X is a key
- List only the minimal X's

33

Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

34

Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

(name, category) + = name, category, price, color Hence (name, category) is a key

35

Examples of Keys

Enrollment(student, address, course, room, time)

student → address
room, time → course
student, course → room, time

(find keys at home)

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise

37

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

39

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

What the key?

{SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency 38

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

or

A→BC B→AC

what are the keys here?

Can you design FDs such that there are $\it three \ keys$?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1, ..., A_n \rightarrow B$ is a non-trivial dependency

in R, then $\{A_1, ..., A_n\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently:

 \forall X, either (X⁺ = X) or (X⁺ = all attributes)

41

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

What the key?

 $\{SSN, PhoneNumber\}$ use $SSN \rightarrow Name, City$

to split

BCNF Decomposition Algorithm

repeat

choose $A_1, ..., A_m \rightarrow B_1, ..., B_n$ that violates BNCF split R into $R_1(A_1, ..., A_m, B_1, ..., B_n)$ and $R_2(A_1, ..., A_m, [others])$ continue with both R_1 and R_2

until no more violations



Is there a 2-attribute relation that is not in BCNF?

In practice, we have a better algorithm (coming up)

Example

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

 $SSN \rightarrow Name$, City

SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Let's check anomalies:

- Redundancy ?
- Update?
- Delete ?

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age age → hairColor

Decompose in BCNF (in class):

45

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: $X \neq X^+ \neq [all attributes]$

if (not found) then "R is in BCNF"

let $Y = X^{+} - X$

<u>let</u> $Z = [all attributes] - X^+$

decompose R into R1(X \cup Y) and R2(X \cup Z) continue to decompose recursively R1 and R2

46

Find X s.t.: $X \neq X^+ \neq [all \ attributes]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age age → hairColor

Iteration 1: Person

SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P

age+ = age, hairColor

Decompose: People(<u>SSN</u>, name, age) Hair(<u>age</u>, hairColor)

Phone(SSN, phoneNumber)

What are the keys?

