Introduction to Database Systems
CSE 444

Lectures 8 & 9
Database Design

April 16 & 18, 2008

Outline

* The relational data model: 3.1

* Functional dependencies: 3.4

Schema Refinements = Normal
Forms

Ist Normal Form = all tables are flat

2nd Normal Form = obsolete

Boyce Codd Normal Form = will study
3rd Normal Form = see book

First Normal Form (1NF)

* A database schema is in First Normal Form
if all tables are flat

Student

Name

GPA

Courses

Alice

3.8

£

9
©

0s

Bob

3.7

Carol

3.9

Student

Name

GPA

Alice

3.8

Bob

3.7

Carol

3.9

—

May need
to add keys

Takes

Student

Course

Course

Alice

Math

Course

Carol

Math

Math

Alice

DB

DB

Bob

DB

oS

Alice

oS

Carol

oS

4/15/2008

Relational Schema Design

Coamed
Conceptual Model: @

<> CEOEXED

|

|
Relational Model:
plus FD’s

= ~ 7 N

Normalization:]
Eliminates anomalies]

Data Anomalies

When a database is poorly designed we get anomalies:
Redundancy: data is repeated
Update anomalies: need to change in several places

Delete anomalies: may lose data when we don’t want

Relational Schema Design

Recall set attributes (persons with several phones):

Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 908-555-2121 | Westfield

One person may have multiple phones, but lives in only one city

Anomalies:
* Redundancy = repeated data
* Update anomalies = Fred moves to “Bellevue”
* Deletion anomalies = Joe deletes his phone number:
what is his city ? 7

Relation Decomposition

Break the relation into two:

Name SSN PhoneNumber | City

Fred 123-45-6789 | 206-555-1234 | Seattle

Fred 123-45-6789 | 206-555-6543 | Seattle

Joe 987-65-4321 | 908-555-2121 | Westfield
Name SSN City SSN PhoneNumber
Fred 123-45-6789 | Seattle 123-45-6789 206-555-1234
Joe 987-65-4321 | Westfield 123-45-6789 206-555-6543

. 987-65-4321 908-555-2121

Anomalies are gone:

* No more repeated data
* Easy to move Fred to “Bellevue” (how?)
* Easy to delete all Joe’s phone numbers (how?) 8

4/15/2008

Relational Schema Design
(or Logical Design)
Main idea:
* Start with some relational schema
» Find out its functional dependencies

* Use them to design a better relational
schema

Functional Dependencies

* A form of constraint

— hence, part of the schema
* Finding them is part of the database design
* Also used in normalizing the relations

Functional Dependencies
Definition:

If two tuples agree on the attributes
then they must also agree on the attributes
By, B,, ..., B,
Formally:

|ALA, ..,A, D B,B,, ...,B,|

vy Dy

When Does an FD Hold

Definition: A, ..., A, 2 By, ..., B holds in R if:

Vt,t’ e R, AU A AL ALA A BB AL ALBSC.B))

R Al . |A B, | ..|B

m m

- J g

ift, t’ agee here thent, t’ggree here 12

4/15/2008

Examples
An FD holds, or does not hold on an instance:
EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
Ell11 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer
EmpID - Name, Phone, Position
Position = Phone
13
Example
EmpID |Name Phone Position
E0045 Smith 1234 — |Clerk
E3542 Mike 9876 Salesrep
Ell11 Smith 9876 Salesrep
E9999 Mary 1234 — |Lawyer

Example
EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 <« |Salesrep
El111 Smith 9876 <« |Salesrep
E9999 Mary 1234 Lawyer
Position > Phone
14
Example
FD’s are constraints:
* On some instances they hold name > color
* On others they don’t category = dep artmgnt
color, category = price
name category color department price
Gizmo Gadget Green Toys 49
Tweaker Gadget Green Toys 99

Does this instance satisfy all the FDs ?

4/15/2008

What about this one ?

Example name > color
category > department
color, category - price

name category color department price
Gizmo Gadget Green Toys 49
Tweaker Gadget Black Toys 99
Gizmo Stationary Green Office-supp. 59

An Interesting Observation

name —> color
If all these FDs are true: category > department
color, category = price

Then this FD also holds: name, category = price

Goal: Find ALL Functional
Dependencies

* Anomalies occur when certain “bad” FDs

hold

* We know some of the FDs

* Need to find all FDs, then look for the bad

ones

\Arh} 2?7 18
Armstrong’s Rules (1/3)
|ALA, .., A, 2 B,B,, ... B,
Splitting rule
and

Is equivalent to Combing rule

ALA,, ..,A, > B,

ALA,, ...,A, 2B,

20

4/15/2008

Armstrong’s Rules (1/3)

(ALA, A DA

Trivial Rule

Why ?

wherei=1,2,..,n

A An

21

Armstrong’s Rules (1/3)

Transitive Closure Rule

If |ALA,...A, 2 B,B,, ... B, |
and BB, ...B, 2C,C, ..., C |
then (ALA, ..,A,2C,Cy . C, |
Whyo 22

A

23

Example (continued)

Start from the following FDs: 1. name - color
2. category > department

3. color, category > price

Infer the following FDs:

‘Which Rule

Inferred FD did we apply ?

. name, category = name

. name, category > color

. name, category —> category

. name, category —> color, category

el IEN I o)W IS T I N

. name, category = price #

4/15/2008

Example (continued)

1. name = color
Answers: 2. category = department
3. color, category => price

Which Rule
Inferred FD did we apply ?
4. name, category = name Trivial rule

5. name, category = color Transitivity on 4, 1

6. name, category —> category Trivial rule

7. name, category > color, category |Split/combine on 5, 6

8. name, category = price Transitivity on 3, 7

Closure of a set of Attributes

Given a set of attributes A, ..., A

n

The closure, {A,, ..., A,}" = the set of attributes B
st.A,..,A, 2B

Example: name - color
category = department
color, category = price

Closures:
name* = {name, color}
{name, category}" = {name, category, color, department, price}

THIS IS TOO HARD ! Let’s see an easier way. »
Closure Algorithm
X={Al, ..., An}. Example:

Repeat until X doesn’t change do: name > color
category > department

if B, ..,B,>C isaFDand| |color, category > price

B, ...,B, areallin X
then add C to X.

{name, category}" =
{ name, category, color, department, price }

Hence: ‘ name, category = color, department, price ‘ -

color* = {color} 26
Example
In class:
R(A,B,C,D,EF) AB > C
A,D > E
B > D
A,F> B
Compute {A,B}* X ={A,B, }
Compute {A,F}* X={A,F, }

28

4/15/2008

Why Do We Need Closure

» With closure we can find all FD’s easily

e Tocheckif X = A
— Compute X*
— Check if A € X*

29

Using Closure to Infer ALL FDs

Example:

]

v

C
B

jwillee}

s

A
A
B 2> D

Step 1: Compute X*, for every X:
A+=A, B+=BD, C+=C, D+=D
AB+=ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD
ABC+=ABD+=ACD*=ABCD (no need to compute— why ?)
BCD"=BCD, ABCD+=ABCD

Step 2: Enumerate all FD’s X 2 Y, s.t. Y € X" and XNY = J:
AB - CD,AD->BC, ABC > D,ABD~> C,ACD~>B ‘ 30

Another Example

* Enrollment(student, major, course, room, time)
student = major
major, course = room

course = time

What else can we infer ? [in class, or at home]

Keys

+ A superkey is a set of attributes A, ..., A, s.t. for
any other attribute B, we have A, ..., A, 2> B

A key is a minimal superkey

— i.e. set of attributes which is a superkey and for which
no subset is a superkey

32

4/15/2008

Computing (Super)Keys

» Compute X* for all sets X
 If X* = all attributes, then X is a key
* List only the minimal X’s

Example

Product(name, price, category, color)

name, category —> price
category > color

What is the key ?

34

Example

Product(name, price, category, color)

name, category —> price
category > color

What is the key ?

(name, category) + = name, category, price, color

Hence (name, category) is a key N

Examples of Keys

Enrollment(student, address, course, room, time)

student = address
room, time = course
student, course = room, time

(find keys at home)

36

4/15/2008

Eliminating Anomalies

Main idea:
* X > Ais OK if X is a (super)key

* X = A is not OK otherwise

Example
Name |SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 |908-555-2121 | Westfield
Joe 987-65-4321 |908-555-1234 | Westfield

‘ SSN - Name, City ‘

What the key?

{SSN, PhoneNumber}

Hence SSN - Name, City
is a “bad” dependency

38

Key or Keys ?
Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two
or more keys

Can we have more than one key ?

Key or Keys ?

Given R(A,B,C) define FD’s s.t. there are two
or more keys

AB->C
BC->A

or

A->BC

B>AC

what are the keys here ?
Can you design FDs such that there are three keys ?

40

4/15/2008

10

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

Acrelation R is in BCNF if:
IfA,, ..., A, 2 B is a non-trivial dependency

inR, then {A|, ..., A,} is asuperkey for R

In other words: there are no “bad” FDs

Equivalently:
V X, either (X*=X) or (X*=all attributes)

41

BCNF Decomposition Algorithm

repeat
choose A, ..., A, 2 By, ..., B, that violates BNCF

split R into R(A}, ..., A, By, ..., B and Ry(A, ..., A, [others])
continue with both R, and R,
until no more violations

Is there a
2-attribute
relation that is
not in BCNF ?

In practice, we have

Example

Name |SSN PhoneNumber | City

Fred 123-45-6789 |206-555-1234 | Seattle
Fred 123-45-6789 |206-555-6543 | Seattle
Joe 987-65-4321 |908-555-2121 | Westfield
Joe 987-65-4321 |908-555-1234 | Westfield

|SSN > Name, City

What the key? _
{SSN, PhoneNumber} use SSN = Name, City
to split s

R, R, a better algorithm (cominézup)
Example
Name SSN Cit .
— - SSN - Name, City
Fred 123-45-6789 | Seattle
Joe 987-65-4321 | Westfield
SSN PhoneNumber Let’s check anomalies:

* Redundancy ?
* Update ?
* Delete ?

123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

44

4/15/2008

11

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age = hairColor

Decompose in BCNF (in class):

45

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: X #X* # [all attributes]
if (not found) then “R is in BCNF”

letY=X"-X

let Z = [all attributes] - X*

decompose R into R1(X U Y) and R2(X U Z)
continue to decompose recursively R1 and R2

46

Find X s.t.: X #X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age = hairColor

Iteration 1: Person

SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age)

What are
. ’ the keys ?
Hair(age, hairColor)

Phone(SSN, phoneNumber) 4

R(A,B’C,D) A 9 B

Example B>C

R(A7B,C)D)
A*=ABC # ABCD

What are
the keys ?

What happens if in R we first pick B ? Or AB%;?

R,(A,B,C)
B*=BC#ABC

4/15/2008

12

Decompositions in General

|R(A, ., Ay By, s B C s C) |

RN

IR(A, A B, .B)| [RyA,.,ALCpL . O]

R, =projectionof RonA,, ..., A, By, ..., B,
R, =projectionof Ron A, ..., A, Cy, ..., C,

49

Theory of Decomposition

* Sometimes it is correct:

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera
4 N
Name Price Name Category
Gizmo 19.99 Gizmo Gadget
OneClick 24.99 OneClick Camera
0 - Gizmo Camera

oy 50
Lossless decomposition

Incorrect Decomposition

* Sometimes it is not:

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera

/ Gizmo 19.99 Camera \

What’s

Name Category Price Category

Gizmo Gadget 19.99 Gadget
OneClick Camera 24.99 Camera

Gizmo Camera 19.99 Camera

Lossy decomposition

incorrect ??

Decompositions in General

|[RA,..,A, B, ...B,C,, ... C) |

RN

IR(A, .. A, B}, . B IRyA, ., A, Cy o C)) |

If A, ..,A, > B, ..B_
Then the decomposition is lossless

Note: don’t need Ay, ..., A, > Cy, ..., C,

‘ BCNF decomposition is always lossless. WHY ? | s,

4/15/2008

13

