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Outline

• The Project• The Project
• Nulls (6.1.6)
• Outer joins (6.3.8)
• Database Modifications (6.5)
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The Project

• Application:• Application:
– Boutique online music and book store

• Project:
– Create database, access through a Web interface
– Import real data and develop inventory logic
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– Customer checkout
– Advanced functionality (TBD)

The Project

• Team:Team:
– Two people
– Find partner now!

• Tools:
– SQL Server 2005

Vi l S di 2005
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– Visual Studio 2005
– C# 2.0
– ASP.NET 2.0
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The Project

Phase 1: posted now due April 18Phase 1: posted now, due April 18
• Create a schema
• Populate the database: fake data for now
• Access through a simple Web interface
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NULLS in SQL

• Whenever we don’t have a value we can put a NULLWhenever we don t have a value, we can put a NULL
• Can mean many things:

– Value does not exists
– Value exists but is unknown
– Value not applicable
– Etc.

• The schema specifies for each attribute if can be null
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• The schema specifies for each attribute if can be null 
(nullable attribute) or not

• How does SQL cope with tables that have NULLs ?

Null Values

• If x= NULL then 4*(3 x)/7 is still NULL• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=“Joe”    is UNKNOWN
• In SQL there are three boolean values:

FALSE = 0
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FALSE             = 0
UNKNOWN    = 0.5
TRUE               = 1

Null Values
• C1 AND C2   =  min(C1, C2)( )
• C1  OR    C2  =  max(C1, C2)
• NOT C1         =  1 – C1

SELECT *
FROM Person
WHERE (age < 25) AND

E.g.
age=20
heigth=NULL
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Rule in SQL: include only tuples that yield TRUE

WHERE (age < 25) AND 
(height > 6 OR weight > 190)

heigth=NULL
weight=200
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Null Values
Unexpected behavior:p

SELECT *
FROM Person
WHERE age < 25  OR  age >= 25
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Some Persons are not included !

Null Values
Can test for NULL explicitly:

– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL
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Now it includes all Persons

WHERE age < 25  OR  age >  25 OR age IS NULL

Outerjoins
Explicit joins in SQL = “inner joins”:

Product(name category)Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

S
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SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

Outerjoins
Left outer joins in SQL:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON
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Product.name = Purchase.prodName
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Name Category ProdName Store

Product Purchase

Gizmo gadget

Camera Photo

OneClick Photo

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store
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Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Application
Compute, for each product, the total number of sales in ‘September’

Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product, Purchase 
WHERE Product.name = Purchase.prodName
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and  Purchase.month = ‘September’
GROUP BY Product.name

What’s wrong ?

Application
Compute, for each product, the total number of sales in ‘September’

Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product LEFT OUTER JOIN Purchase ON

Product name = Purchase prodName
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Product.name = Purchase.prodName
and  Purchase.month = ‘September’

GROUP BY Product.name

Now we also get the products who sold in 0 quantity

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
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j
– Include the both left and right tuples even if there’s no 

match
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Modifying the Database

Three kinds of modificationsThree kinds of modifications
• Insertions
• Deletions
• Updates
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Sometimes they are all called “updates”

Insertions
General form:

INSERT   INTO R(A1,…., An)   VALUES (v1,…., vn)

INSERT  INTO Purchase(buyer, seller, product, store)

Example: Insert a new purchase to the database:
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Missing attribute → NULL.
May drop attribute names if give them in order.

VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,
‘The Sharper Image’)

Insertions

INSERT INTO PRODUCT( )INSERT   INTO PRODUCT(name)

SELECT  DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”
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The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

Insertion: an Example
Product(name, listPrice, category)
P h ( dN b N i )

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

prodName buyerName price
Product

Purchase(prodName, buyerName, price)

Purchase
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name listPrice category

gizmo 100 gadgets

prodName buyerName price

camera John 200

gizmo Smith 80

camera Smith 225

Task: insert in Product all prodNames from Purchase
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Insertion: an Example
INSERT   INTO Product(name)

SELECT  DISTINCT prodName
FROM Purchase
WHERE prodName  NOT IN (SELECT name FROM Product)
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name listPrice category

gizmo 100 Gadgets

camera - -

Insertion: an Example

INSERT INTO Product(name listPrice)INSERT   INTO Product(name, listPrice)

SELECT  DISTINCT prodName, price
FROM Purchase
WHERE prodName  NOT IN (SELECT name FROM Product)

name listPrice category
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gizmo 100 Gadgets

camera 200 -

camera ?? 225  ?? - Depends on the implementation

Deletions
Example:

DELETE    FROM PURCHASE

WHERE seller = ‘Joe’   AND
product = ‘Brooklyn Bridge’
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Factoid about SQL:  there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Updates
Example:

UPDATE PRODUCT
SET price = price/2
WHERE Product.name  IN 

(SELECT product
FROM    Purchase
WHERE Date =‘Oct 25 1999’);
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WHERE Date Oct, 25, 1999 );
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Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)f g g ( )

Data types:
Defines the types.

Data definition: defining the schema.
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• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

Creating Tables

CREATE TABLE P (CREATE     TABLE Person(

name                                VARCHAR(30),
social-security-number    INT,
age                                   SHORTINT,
city VARCHAR(30),
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city                                   VARCHAR(30),
gender                              BIT(1),
Birthdate                          DATE

);         

Deleting  or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone  CHAR(16);

Altering: (adding or removing an attribute).

Example:

DROP Person; Example: Exercise with care !!
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ALTER  TABLE Person
DROP age;

What happens when you make changes to the schema?

Default Values
Specifying default values:Spec y g de au t va ues:

CREATE  TABLE Person(
name     VARCHAR(30),
social-security-number  INT,
age           SHORTINT   DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’
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city      VARCHAR(30) DEFAULT Seattle ,
gender          CHAR(1)  DEFAULT ‘?’,
Birthdate                         DATE

The default of defaults:    NULL
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Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

SELECT *
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Sequential scan of the file Person may take long

FROM Person
WHERE name = “Smith”

• Create an index on name:

Indexes

Create an index on name:
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Adam Betty Charles …. Smith ….

B+ trees have fan-out of 100s: max 4 levels !
Will discuss in the second half of this course

Creating Indexes

CREATE INDEX nameIndex ON Person(name)

Syntax:
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Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

CREATE INDEX ageIndex ON Person (age)

SELECT *
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B+ trees help in:

Why not create indexes on everything?

SELECT  
FROM Person 
WHERE age > 25 AND age < 28
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Creating Indexes
Indexes can be created on more than one attribute:

CREATE INDEX d bl i d ON

SELECT * 
FROM Person 
WHERE age = 55 AND city = “Seattle”

Helps in:

CREATE INDEX doubleindex ON
Person (age, city)Example:

SELECT *
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SELECT * 
FROM Person 
WHERE city = “Seattle”

But not in:

SELECT  
FROM Person 
WHERE age = 55

and even in:

The Index Selection Problem

• Why not build an index on every attribute ?• Why not build an index on every attribute ? 
On every pair of attributes ?  Etc. ?

• The index selection problem is hard: 
balance the query cost v.s. the update cost, 
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q y p ,
in a large application workload


