
1

Introduction to Database Systems
CSE 444

Lecture 04: SQL

April 7, 2008

1

Outline

• The Project• The Project
• Nulls (6.1.6)
• Outer joins (6.3.8)
• Database Modifications (6.5)

2

The Project

• Application:• Application:
– Boutique online music and book store

• Project:
– Create database, access through a Web interface
– Import real data and develop inventory logic

3

p p y g
– Customer checkout
– Advanced functionality (TBD)

The Project

• Team:Team:
– Two people
– Find partner now!

• Tools:
– SQL Server 2005

Vi l S di 2005

4

– Visual Studio 2005
– C# 2.0
– ASP.NET 2.0

2

The Project

Phase 1: posted now due April 18Phase 1: posted now, due April 18
• Create a schema
• Populate the database: fake data for now
• Access through a simple Web interface

5

NULLS in SQL

• Whenever we don’t have a value we can put a NULLWhenever we don t have a value, we can put a NULL
• Can mean many things:

– Value does not exists
– Value exists but is unknown
– Value not applicable
– Etc.

• The schema specifies for each attribute if can be null

6

• The schema specifies for each attribute if can be null
(nullable attribute) or not

• How does SQL cope with tables that have NULLs ?

Null Values

• If x= NULL then 4*(3 x)/7 is still NULL• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=“Joe” is UNKNOWN
• In SQL there are three boolean values:

FALSE = 0

7

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Null Values
• C1 AND C2 = min(C1, C2)()
• C1 OR C2 = max(C1, C2)
• NOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25) AND

E.g.
age=20
heigth=NULL

8

Rule in SQL: include only tuples that yield TRUE

WHERE (age < 25) AND
(height > 6 OR weight > 190)

heigth=NULL
weight=200

3

Null Values
Unexpected behavior:p

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

9

Some Persons are not included !

Null Values
Can test for NULL explicitly:

– x IS NULL
– x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

10

Now it includes all Persons

WHERE age < 25 OR age > 25 OR age IS NULL

Outerjoins
Explicit joins in SQL = “inner joins”:

Product(name category)Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

S

11

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

Outerjoins
Left outer joins in SQL:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

12

Product.name = Purchase.prodName

4

Name Category ProdName Store

Product Purchase

Gizmo gadget

Camera Photo

OneClick Photo

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

13

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Application
Compute, for each product, the total number of sales in ‘September’

Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

14

and Purchase.month = ‘September’
GROUP BY Product.name

What’s wrong ?

Application
Compute, for each product, the total number of sales in ‘September’

Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product LEFT OUTER JOIN Purchase ON

Product name = Purchase prodName

15

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

Now we also get the products who sold in 0 quantity

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:

16

j
– Include the both left and right tuples even if there’s no

match

5

Modifying the Database

Three kinds of modificationsThree kinds of modifications
• Insertions
• Deletions
• Updates

17

Sometimes they are all called “updates”

Insertions
General form:

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)

Example: Insert a new purchase to the database:

18

Missing attribute → NULL.
May drop attribute names if give them in order.

VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,
‘The Sharper Image’)

Insertions

INSERT INTO PRODUCT()INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

19

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

Insertion: an Example
Product(name, listPrice, category)
P h (dN b N i)

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

prodName buyerName price
Product

Purchase(prodName, buyerName, price)

Purchase

20

name listPrice category

gizmo 100 gadgets

prodName buyerName price

camera John 200

gizmo Smith 80

camera Smith 225

Task: insert in Product all prodNames from Purchase

6

Insertion: an Example
INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

21

name listPrice category

gizmo 100 Gadgets

camera - -

Insertion: an Example

INSERT INTO Product(name listPrice)INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

name listPrice category

22

g y

gizmo 100 Gadgets

camera 200 -

camera ?? 225 ?? - Depends on the implementation

Deletions
Example:

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

23

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Updates
Example:

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct 25 1999’);

24

WHERE Date Oct, 25, 1999);

7

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)f g g ()

Data types:
Defines the types.

Data definition: defining the schema.

25

• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

Creating Tables

CREATE TABLE P (CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),

26

city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

Deleting or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone CHAR(16);

Altering: (adding or removing an attribute).

Example:

DROP Person; Example: Exercise with care !!

27

ALTER TABLE Person
DROP age;

What happens when you make changes to the schema?

Default Values
Specifying default values:Spec y g de au t va ues:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’

28

city VARCHAR(30) DEFAULT Seattle ,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

The default of defaults: NULL

8

Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

SELECT *

29

Sequential scan of the file Person may take long

FROM Person
WHERE name = “Smith”

• Create an index on name:

Indexes

Create an index on name:

30

Adam Betty Charles …. Smith ….

B+ trees have fan-out of 100s: max 4 levels !
Will discuss in the second half of this course

Creating Indexes

CREATE INDEX nameIndex ON Person(name)

Syntax:

31

Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

CREATE INDEX ageIndex ON Person (age)

SELECT *

32

B+ trees help in:

Why not create indexes on everything?

SELECT
FROM Person
WHERE age > 25 AND age < 28

9

Creating Indexes
Indexes can be created on more than one attribute:

CREATE INDEX d bl i d ON

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

Helps in:

CREATE INDEX doubleindex ON
Person (age, city)Example:

SELECT *

33

SELECT *
FROM Person
WHERE city = “Seattle”

But not in:

SELECT
FROM Person
WHERE age = 55

and even in:

The Index Selection Problem

• Why not build an index on every attribute ?• Why not build an index on every attribute ?
On every pair of attributes ? Etc. ?

• The index selection problem is hard:
balance the query cost v.s. the update cost,

34

q y p ,
in a large application workload

