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Abstract 
In this paper we describe novel techniques that make it 
possible to build an industrial-strength tool for automating 
the choice of indexes in the physical design of a SQL 
database. The tool takes as input a workload of SQL queries, 
and suggests a set of suitable indexes. We ensure that the 
indexes chosen are effective in reducing the cost of the 
workload by keeping the index selection tool and the query 
optimizer “in step”. The number of index sets that must be 
evaluated to find the optimal configuration is very large. We 
reduce the complexity of this problem using three 
techniques. First, we remove a large number of spurious 
indexes from consideration by taking into account both query 
syntax and cost information. Second, we introduce 
optimizations that make it possible to cheaply evaluate the 
“goodness” of an index set. Third, we describe an iterative 
approach to handle the complexity arising from multi- 
column indexes. The tool has been implemented on 
Microsoft SQL Server 7.0. We performed extensive 
experiments over a range of workloads, including TIC-D. 
The results indicate that the tool is efficient and its choices 
are close to optimal. 

1. Introduction 
Enterprise-class databases require database 

administrators who are responsible for performance tuning. 
With large-scale deployment of databases, minimizing 
database administration function becomes important. We 
started the AutoAdmin research project at Microsoft to 
investigate new techniques to self-tune and self-administer 
database systems to achieve performance competitive with 
that of systems that are cared for by database administrators. 
One important task of a database administrator is selecting a 
physical database design appropriate for the workload of the 
system. An important part of physical database design is 
selecting indexes. In this paper, we present the novel 
technique that we have developed in the AutoAdmin project 
to automate the task of selecting a set of indexes. 
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The index selection problem has been studied since 
the early 70’s and the importance of the problem is well 
recognized. Despite a long history of work in this area, there 
are few research prototypes and commercial products that are 
widely deployed. Three basic approaches have been taken to 
the index selection problem. The “textbook solutions” 
KG931 take semantic information such as uniqueness, 
reference constraints and rudimentary statistics (“small” vs. 
“big” tables) and produce a database design. Such designs 
may perform poorly because they ignore valuable workload 
information. The second class of tools adopt an expert 
system like approach, where the knowledge of “good” 
designs are encoded as rules and are used to come up with a 
design. Such tools can take into account workload 
information but suffer from being disconnected from the 
query optimizer [HE91]. This has adverse ramifications for 
two reasons. First, a selection of indexes is only as good as 
the optimizer that uses it. In other words, if the optimizer 
does not consider a particular index for a query, then its 
presence in the database does not benefit that query. Second, 
these tools operate on their own model of the query 
optimizer’s index usage. While making an accurate model is 
itself hard, ensuring consistency between the tool and an 
evolving optimizer is a software-engineering nightmare. 

In the third approach, the index selection tool uses the 
optimizer’s cost estimates to compare goodness of 
alternative hypothetical designs. This approach avoids 
asynchrony between the index selection tool and the query 
optimizer. This is the approach we have adopted (also 
adopted in [FST88]). 

1.1 Our Contributions 
The AutoAdmin index selection tool that we describe in 

this paper is significant in several ways. First, we have 
recognized that index selection is more than just a difficult 
search problem. Therefore, we have taken an end to end 
systems approach in identifying the building blocks of an 
index selection tool, when the tool uses the optimizer’s cost 
estimates. Implementing the index selection tool has given us 
a good understanding of the architectural and system level 
issues. Second, we use a novel search technique that filters 
out spurious indexes in an early stage and exploits 
characteristics of the relational query engine to reduce the 
cost of selecting indexes. Another novelty of our search 
technique is exploring the space of alternative indexes in an 
iterative way such that more complex alternatives (e.g., 
multi-column indexes) are generated from “good” simpler 
alternatives (e.g., single-column indexes). Finally, since we 
have fully implemented our tool on Microsoft SQL Server 
7.0 (with necessary server changes), we are able to present 
extensive experimental results. These results demonstrate 
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that our proposed techniques result in an improvement by a 
factor of 4 to 10 in the search time, without significantly 
sacrificing the quality of the result. The experimental results 
complement our intuition on the effectiveness of the 
strategies proposed in the paper. 

2. Overview of Our Approach 
2.1 Problem Statement 

Our goal is to pick a set of indexes that is suitable for a 
given database and workload. An index can be single-column 
or multi-column. An index may be either clustered or non- 
clustered, although over any single table, there can be at 
most one clustered index. A workload consists of a set of 
SQL data manipulation statements, i.e., Select, Insert, Delete 
and Update. In this paper we use the term configuration to 
mean a set of indexes. We define the size of a configuration 
as the number of indexes in the configuration. 

To pick a configuration, we must be able to compare the 
relative goodness of any two configurations. Given a 
configuration and a workload, we use the sum of the 
optimizer estimated costs for all the SQL statements in the 
workload as the metric of goodness. We refer to this metric 
as the total cost of a configuration. Given a workload, a 
configuration that has the least value of total cost is called 
the optimal configuration. The goal of an index selection 
tool is to pick a configuration that is optimal or as close to 
optimal as possible. The index selection process is subject to 
constraints, e.g., an upper bound on the number of indexes or 
storage space. In this paper, we describe our technique to 
deal with the problem of picking a configuration subject to 
an upper bound on the number of indexes. 

2.2 Architecture of the Index Selection Tool 
An overview of the architecture of our index selection 

tool is presented in Figure 1. The dotted line in the figure 
denotes the process boundary between the tool and SQL 
Server. The index selection tool takes as input a workload on 
a specified database. The tool has a basic search algorithm, 
which iteratively picks more complex index structures. In the 
first iteration, the tool considers only single-column indexes; 
in the second iteration it considers single and two-column 
indexes, and so on. The search algorithm derives its 
efficiency from each of its three modules. First, the 
candidate index selection module (Section 4) eliminates 
from further consideration, a large number of indexes that 
provide little or no benefit for any query in the workload. 
The configuration enumeration module (Section 5) 
intelligently searches the space of subsets of candidate 
indexes and picks a configuration with low total cost. The 
multi-column index generation module selects multi-column 
indexes to be considered in the next iteration along with the 
indexes chosen by the configuration enumeration module. 
The tool has been designed so that any of these modules can 
be replaced with a newer or improved version, without 
having to change any of the remaining modules. 

Any index selection tool that bases its choices on 
optimizer cost estimates requires the ability to evaluate the 
workload for a given configuration. This service is provided 
in our architecture by the cost-evaluation module (Section 

3). This module maintains the cost table information shown 
in Figure 2. The cost-evaluation module performs 
optimizations so that it needs to invoke the optimizer only 
for a selected subset of the configurations. Since an index 
considered by the search algorithm may not be present in the 
database, the tool also requires the ability to “simulate” the 
presence of the index in the database for the optimizer. The 
“what-if” index creation module provides the tool with an 
interface for specifying this requirement. We have modified 
SQL Server to support the creation and loading of a “what- 
if’ index. A detailed discussion of the required changes to 
the server is beyond the scope of this paper. 
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There are three important measures of the eficiency 
of an index selection tool: (1) The number of indexes 
considered by the tool for a given workload. (2) The number 
of configurations that are enumerated by the index selection 
tool. (3) The number of optimizer invocations necessary to 
evaluate the total cost for each enumerated configuration. 
Any solution to the index selection problem has to be judged 
by its efficiency as well as by its quality (how close the 
solution is to the optimal). As we will show in this paper, an 
index selection tool can be made efficient through well- 



designed algorithms, without significantly reducing the 
quality. 

2.3 Preliminaries 
Indexable columns identify columns in a query that 

are potentially useful for indexing. We present a simple 
definition of indexable columns here. Indexable columns 
form the basis for defining admissible indexes of a workload 
which identify the set of all potentially useful indexes for a 
workload and provide the starting point for the index 
selection tool which picks a subset of these indexes. These 
definitions can be easily modified without affecting the rest 
of the index selection tool. In the following definitions, we 
refer to SQL DML statement and “Query” interchangeably. 

Definitions: 
(i) An indexable column for a query in the workload is a 
column R.a such that there is a condition of the form R.a 
operator Expression in the WHERE clause. The operator 
must be among { =, <, >, <=, >=, BETWEEN, IN}. 
Columns in GROUP BY and ORDER BY clauses are also 
considered indexable. For an Update query, the updated 
columns of the table are considered indexable. 
(ii) An admissible index for a query is an index that is on one 
or more (in case of a multi-column index) indexable columns 
of the query. 
(iii) An admissible index for a workload is an index that is an 
admissible index for one or more queries in the workload. 

Example 1: Indexable Columns of a Query 
Consider the following query Qi: 
SELECT * FROM onektup, tenktupl 
WHERE (onektup.uniquel = tenktupl .uniquel) 
AND (tenktup 1 .unique2 between 0 and 1000) 
From the above definition, it follows that the indexable 
columns of Q, are (onektup.uniquel, tenktupl unique1 , 
tenktup 1 .unique2). 

3. Cost Evaluation 
In the naive approach to evaluating a configuration, 

the cost-evaluator asks the optimizer for a cost estimate for 
each query in the workload. Thus, if there are M 
configurations and Q queries in the workload, such 
estimation requires asking the SQL Server to optimize M*Q 
queries. Invoking the optimizer many times can be expensive 
(despite batching the invocations), since it requires 
communication across process boundaries between the tool 
and the server. In this section, we present techniques that 
result in significantly reducing the number of optimizer calls 
through the concept of atomic configurations (cf. [FST 881). 

Intuitively, a configuration C is atomic for a 
workload if for some query in the workload there is a 
possible execution of the query by the query engine that uses 
all indexes in C. In Section 3.1, we show that if a 
configuration is not atomic for the workload, then we can 
derive the cost of queries for that configuration accurately. 
Therefore, instead of having to evaluate all M configurations 
(over the space of admissible indexes of the workload), it is 
sufficient to ask the optimizer to evaluate only M’ 

configurations among M, as long as all atomic configurations 
are included in M’. Identifying which configurations are to 
be included among M’ is crucial for the accuracy and 
efficiency of the tool, and we present two techniques for this 
in Section 3.2. 

Another way to reduce optimizer invocation is to 
exploit the fact that not every atomic configuration needs to 
be evaluated for every query in the workload. In particular, 
we may be able to estimate the cost of a query Q for an 
atomic configuration C by using the cost of the query for a 
“simpler” configuration C’. Section 3.3 describes this 
optimization. 

3.1 Deriving Cost of a Configuration from Atomic 
Configurations 

Let us assume that C is a configuration that is not 
atomic and Q is a Select/Update query in the workload. 
Consider all atomic configurations Ci of Q that are subsets of 
C. One of these configurations must be chosen by the 
optimizer while optimizing Q. Therefore, a well-behaved 
optimizer will choose the atomic configuration from the 
above set that has the minimal cost. Therefore, we can derive 
Cost (Q, C) = Mini (Cost(Q, Ci)} without invoking the 
optimizer. Furthermore, since for a Select query, inclusion of 
an index in a configuration can only reduce cost, it will 
suffice to take the minimum cost over the largest atomic 
configurations of Q that are subsets of C. 

If Q is an Insert/Delete Query, the analysis is more 
complex. The cost of an Insert/Delete query for a non-atomic 
configuration C, can be divided in three components. (a) 
Cost of selection (b) Cost of updating the table and the 
indexes that may be used for selection and (c) Cost for 
updating indexes that do not affect the selection cost. We 
note that the cost for updating each index in (c) is 
independent of each other and can be assumed to be 
independent of the plan chosen for (a) and (b). Therefore, the 
optimizer will pick a plan that minimizes costs for (a) and 
(b). As in a Select/Update query, we can derive T, the 
minimum of the costs over all atomic configurations of Q 
that are subsets of C to reflect the components (a) and (b) of 
Cost (Q, C) . To get the cost of updating an index I that is in 
(c), we look up (Cost (Q, (I]) - Cost (Q, { }). Thus we can 
estimate the total cost by: T + & (Cost (Q, [Ii)) - Cost (Q, 
( ))) without invoking the optimizer for C. 

3.2 Identifying Atomic Configurations 
In this section we address the important issue of 

identifying atomic configurations for a workload. The total 
number of atomic configurations can be very large. In 
particular, for multi-table queries the number of atomic 
configurations is exponential in the number of tables. The 
next two sections describe techniques for heuristically 
reducing the number of atomic configurations that need to be 
considered for a workload without significantly sacrificing 
the accuracy of cost estimation. 

3.2.1 Query Processor Based Restrictions 
The characteristics of the query processor can 

influence what constitutes an atomic configuration. We 
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exploit two widely applicable considerations to restrict the 
set of configurations we consider atomic. 
. In any given execution of a query, the query processor 

will only use no more than j indexes per table’ (for some 
integer j). This restriction reflects the pragmatic that no 
more than a small number of indexes’ may be 
intersected to identify tuples of one relation. For query 
engines that do not support index intersection, we can 
strengthen this condition by requiring that no more than 
one index per table appear in any atomic configuration. 

. In any given execution of a multi-table query, indexes 
from at most t tables need to be considered for an 
atomic configuration. The intuition is that indexes used 
in the first few joins of a query have the most impact on 
the cost of the query. 

In designing our cost evaluation module, we found that 
values of j = 2 and t = 2 provide good quality solutions 
while dramatically reducing the number of atomic 
configurations for complex workloads. We refer to these as 
single-join atomic configurations. It is the search strategy, 
discussed in Section 5, which determines how and when 
these atomic configurations are evaluated. In particular, they 
may be evaluated “on-demand”, i.e., when we are asked to 
evaluate Cost (Q, C), we evaluate all atomic configurations 
that are subsets of C, which have not yet been evaluated. 

It is possible for search strategies to use different 
values of j and t during enumeration. In fact, we have 
explored a two-tier search strategy where during the first 
phase single-join atomic configurations are used. Only 
indexes chosen in the first phase are considered in the second 
phase but no restrictions on atomic configurations are 
imposed during this phase. Due to space constraints, we 
don’t discuss experimental results of this two-tier search 
strategy [CN97]. 

Example 2. Single-join Atomic Configurations 
Consider a SELECT query with conditions T,.A < 20, 

T,.A = T2.B, T3.C BETWEEN [30,50], T,.C = T2.B. In this 
case, one 3-table atomic configuration is (T,.A, T2.B, T3.C) 
since all three indexes may be used together to answer the 
query. However, due to the single-join atomic configuration 
based pruning step, the above atomic configuration is not 
evaluated. Rather, the cost of this query for the 3-table 
configuration is estimated by taking minimum of the costs of 
the atomic configurations: (T,.A, T,.B), (T,.A, T,.C), and 
(T2.B, T3.C). 

3.2.2 Adaptive Strategy Based on Index Interaction 
Our second technique does not make assumptions about 

the characteristics of the query processor. Instead it 
adaptively detects atomic configurations for a workload 
based on interaction among indexes. Assume that an atomic 
configuration C, of size n, has already been evaluated .The 
evaluated cost is compared with the derived cost (using 
techniques in Section 3.1). If the evaluated cost is 
significantly different from the derived cost, then it signals 

’ A correlation to be precise. 
, 

’ Each index can either be clustered or non-clustered. 

that indexes in C interact. In such cases, we will evaluate 
atomic configurations of size n + 1 that extend C. We 
!ormalize this intuition by the following algorithm: 

1. n = 2; A = {atomic configurations of size <= 2). 
2. A’={ ); Evaluate all configurations in A. 
3. For each configuration C in A, determine if the 

indexes in C interact strongly. We do this by 
testing to see if the evaluated cost of the 
configuration is at least x% less than its derived 
cost. 

4. If C meets the above condition, add all atomic 
configurations of size n+l that are supersets of C 
to A’. 

5. If A’ = ( ), then exit. 
ElseA=A’;n=n+l,GotoStep2. 

I 

Figure 3. Adaptive Detection of Relevant 
Atomic Configurations. 

The parameter x defines the threshold of index interaction. If 
the value of x is chosen too small, the risk of too many 
spurious atomic configurations being chosen in Step 4 is 
high. On the other hand, if x is too large, interaction among 
indexes can go undetected. Therefore, for the algorithm to 
perform well, choosing an appropriate value of x is 
important. Due to space constraints, we are unable to provide 
details on how to choose x; we defer this discussion and the 
experimental results to [CN97]. 

3.3 Reducing the Cost of Evaluating Atomic 
Configurations 

When evaluating an atomic configuration, 
substantial savings are possible in the number of optimizer 
calls by the following optimization. The idea is that when 
asked to evaluate Cost (Q, C), we find a “simpler” atomic 
configuration C’ such that Cost (Q, C) = Cost (Q, C’). 
Assume that the set of indexable columns for the 
Select/Update query Q’ is P. Then, only indexes in C that 
are on one or more cohunns in the set P have effect on the 
cost of the query Q. If C’ is the configuration consisting of 
only such indexes then Cost (Q, C) = Cost (Q, C’). If Cost 
(Q, C’) has already been evaluated, we can simply reuse the 
cost. We refer to this step as the relevant index set 
optimization. An extreme case of relevant index set 
optimization occurs where the relevant set is empty. In this 
case, the estimated cost for the query is the same as that over 
a database with no indexes. We call this the irrelevant index 
set optimization. 

Example 3: Reducing calh to the optimizer 
Consider the following query QZ: 
SELECT * FROM onektup WHERE unique1 < 100 

Assume that I, is an index on onektup.uniquel and 
I2 is an index on tenktupl .uniquel; we wish to evaluate the 
configuration C = {I,, I*}. The indexable columns of Qz are 

3 Similar arguments apply for Insert/Delete queries. Details are 
available in [CN97]. 
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{ onektup.uniquel }. Following the above optimization 
technique, Cost (Qz, C) = Cost (Qa, (I,}). If Cost (QZ, {I,}) 
has been evaluated previously, then we save an optimizer 
invocation. 

4. Candidate Index Selection 
If we consider every admissible index of the 

workload, then too many spurious indexes will be 
considered, resulting in a blow up of the space of 
configurations that must be enumerated. We now describe 
our algorithm for picking the set of candidate indexes from 
the space of admissible indexes. 

The idea is to determine the best configuration for 
each query independently, and consider all indexes that 
belong to one or more of these best configurations as the 
candidate index set. The intuition behind this algorithm is 
that an index that is not part of the best design for even a 
single query in the workload, is unlikely to be part of the best 
design for the entire workload. We refer to this technique as 
the query-specific-best-configuration candidate index 
selection algorithm. The challenge, therefore, is to determine 
the best configuration for each query Q in the workload. 

We now make a key observation about choosing 
the best configuration for a query: the problem is no different 
than the overall problem of index selection itself, the 
difference is that the workload consists of exactly one query. 
We can therefore obtain the best configuration for each 
configuration by using the index selection tool itself! We 
now elaborate on this technique. 

Let the workload W be (Q,, .., Qn). The enumeration 
step (described in Section 5) picks the final set of k indexes 
by enumerating configurations over a set, CI, of candidate 
indexes. We denote this step by Enumerate(k, CI, W) where 
CI is the set of candidate indexes. When there are no bounds 
on k, we designate the step by Enumerate (CI, W). Let Ii 
denote the indexable columns of the query Qj. We describe 
the algorithm in Figure 4 using these notations. 

Step 2 of the algorithm shows that for the purpose 
of determining candidate indexes, we consider all indexable 
columns of the query as candidates. This is how we avoid 
“cyclic dependence” on the candidate index selection 
module. 

1. For the given workload W that consists of n 
queries, we generate n workloads W,..W,, each 
consisting of one query each, where Wi = { Qi} 

2. For each workload Wi, we use the set of 
indexable columns Ii of the query in Wi as 
starting candidate indexes. 

3. Let Ci be the configuration picked by index 
selection tool for Wi, i.e., Ci = Enumerate (Ii, 
wi). 

4. The candidate index set for W is the union of all 
ci’s. 

Figure 4. Candidate index selection algorithm 

We comment on several properties of this 
algorithm. First, if the workload is free of updates (including 
insert and delete statements), and if we do not impose any 
bound on the number of indexes that may be chosen, then the 
configuration chosen by this algorithm has less or equal total 
cost for the workload compared to any other configuration. 
However, if the workload contains updates or if there is a 
bound on the number of indexes to be chosen by the 
algorithm, then this guarantee does not hold. For example, 
say that the workload consists of a query Q with two 
indexable columns TiCi and T2.CZ, and an insert query U on 
T, such that the best configuration for Q consists of an index 
on TiCi only. In such a case, if the index maintenance cost 
predicted for U is high, then it is possible for the index 
selection tool to not recommend any index since the 
enumeration phase will not consider T& Such situations 
result in inappropriate pruning. A similar observation may be 
made when we restrict the number of indexes to chosen by 
the above candidate index selection algorithm. 

Although generalizations of the algorithm are 
possible to account for these observations (e.g. modifying 
Step 3 to pick the “next best” or the top few configuration(s) 
as well), the basic scheme did very well on a variety of 
workloads, including those with updates. This is due to a 
couple of factors. First, indexes that are part of the “next 
best” configuration of a query may appear as the best 
configuration for another query in the workload. Also, when 
there are multiple indexes selected in the best configuration, 
there may be considerable overlap between indexes in the 
best and the “next best” configurations. Finally, since Step 3 
of the algorithm picks configurations without a bound on the 
number of indexes, we expect that most indexes from the 
“next best” configurations will also find their way into the set 
of candidate indexes. 

5. Configuration Enumeration 
If there are n candidate indexes, and the tool is 

asked to pick k indexes, a n&e enumeration algorithm 
would enumerate all subsets of the candidate indexes of size 
k or less, and pick the one with lowest total cost. The ndive 
enumeration algorithm guarantees an optimal solution; 
however, it is not practical, since for realistic values of n and 
k (e.g., n=40 and k=lO) the number of configurations 
enumerated is too large to make exhaustive enumeration 
feasible. 

1. Let S = the best m index configuration using the 
nui:ve enumeration algorithm. If m = k then exit. 

2. Pick a new index I such that Cost (S U {I}, W) 
c= Cost(S U(I’ }, W) for any choice of I’ != I 

3. If Cost (S U {I}) >= Cost(S) then exit 
Else S = S U (I} 

4. If ISI = k then exit 
5. Got.02 

Figure 5. The Greedy@, k) enumeration algorithm 

Our approach to the configuration enumeration 
problem is to use the Greedy (m, k) algorithm, shown in 
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Figure 5. The algorithm picks an optimal configuration of 
size m (where m <= k) as the “seed”. This seed is then 
expanded in a greedy fashion until all k indexes have been 
chosen, or no further reduction in cost is possible by adding 
an index. Each greedy step considers all possible choices for 
adding one more index and adds the one resulting in the 
highest cost reduction. Note that at one extreme, if the 
parameter m = 0, then the algorithm takes a pure greedy 
approach. On the other hand, if m = k, the algorithm is 
identical to the ndive enumeration algorithm. Therefore, the 
use of the algorithm is computationally efficient only if m is 
small relative to k. In such a case, the enumeration exhibits 
near greedy behavior. The value of m relative to k reflects 
the desired degree of completeness of enumeration. The 
issue of heuristically determining an appropriate value of m 
depending on the index interactions among queries in the 
workload is discussed in [CN97]. This measure can also be 
adjusted by the user of the tool explicitly to vary the nature 
of enumeration from quick and heuristic to exhaustive. 
Despite the fact that a greedy algorithm can be in principle 
arbitrarily bad for configuration enumeration [CN97], our 
experimental results seem to indicate that a relatively low 
value of m produces near-optimal resuhs 

The key reason why a greedy algorithm performs 
well for enumeration is that in many cases, despite 
interaction among indexes, the largest cost reductions often 
results from indexes that are good candidate indexes by 
themselves. Nonetheless, it is important to capture 
significant interactions, e.g., merge join using two clustered 
indexes, single table index intersection. This justifies the 
exhaustive phase of Greedy (m, k) since it helps capture 
interactions that have the most significant effect on cost. For 
example, observe that for any single query, the join order is 
often determined primarily by sizes of intermediate relations 
and presence (or absence) of a few important indexes. Once 
the join order has been determined, additional indexes may 
come into play, but such indexes only help reduce the cost of 
a join locally, and do not strongly interact with indexes used 
in other operations in the execution tree. In such cases, the 
exhaustive phase of Greedy (m, k) chooses the important 
interacting indexes that affect the join order and 
subsequently picks the remaining indexes greedily. 

A variant of the enumeration algorithm described 
above uses branch-and-bound. The algorithm uses Greedy 
(m, k) with a low predetermined m to generate a 
configuration that serves as a first-cut solution. 
Subsequently, configurations are enumerated exhaustively 
with the constraint that the cost of each partial configuration4 
must be within a certain factor of the cost of the 
corresponding partial configuration of the first-cut (greedy) 
solution. This algorithm is explained in more details and 
compared with Greedy (m, k) in [CN97] 

6. Multi-Column Index Generation 
Index selection tools of the past have failed to take 

into account the complexity arising from the inclusion of 

multi-column indexes. For a given set of k columns on a 
table, k! multi-column indexes are possible, and considering 
all permutations can significantly increase the space of 
configurations that must be considered by the tool. In this 
section, we present a technique for dealing with this 
complexity. 

We adopt an iterative approach for taking into 
account multi-column indexes of increasing width. In the 
first iteration, we only consider single-column indexes. 
Based on the single-column indexes picked in the first 
iteration, we select a set of admissible two-column indexes. 
This set of two-column indexes, along with the “winning” 
single-column indexes, becomes the input for the second 
iteration’. We use the notation M (a, b) to represent a two- 
column index on the columns a and b where a is the leading 
column of the two-column index. 

Our strategy for selecting the set of two-column 
indexes is based on the intuition that for a two-column index 
to be desirable, a single-column index on its leading column 
must also be desirable. If S is the set of single column 
indexes picked in the first iteration, and a is a column such 
that an index on this column is in S, then we consider the set 
S’ of all admissible multi-column indexes of the form M (a, 
b). No& that B ma& bean indexable column but there may 
not be any index in S U is on 6. We call this algorithm 
MC-LEAD. 

We also considered a more aggressive v&ant of 
MC-LEAD. In this variant, a two-column index M (a, b) is 
considered only if the set S contains an index on a as well on 
b. This algorithm is based on the assumption that for a multi- 
column index M (a, b) to be important, single-column 
indexes on both a and b must be important. We refer to this 
algorithm as MC-ALL. Note that the set of indexes 
considered by MC-ALL is a subset of the indexes considered 
by MC-LEAD. In Section 7, we present a comparison of the 
performance of these algorithms with the scheme where 
single-column and multi-column indexes are searched 
together in one pass (i.e., no iterative step). We refer to this 
algorithm as MC-BASIC. The results demonstrate that MC- 
LEAD is significantly superior. 

These strategies for selecting candidate multi- 
column indexes are closely related to the technique used by 
our tool to consider indexes that help “index-only” access. In 
such cases, while considering M (a, 6) above, b need not be 
an indexable column, but may be part of a projection list in 
the workload that is strongly correlated with the column a. 
These details are presented in [CN97]. 

7. Implementation and Experiments 
7.1 Implementation 

We have implemented our index selection tool for 
Microsoft SQL Server 7.0. The tool takes as input a 
workload of SQL DML statements (generated using the 
SQLTrace utility), and generates a set of indexes as output. 
On startup, the tool gathers schema information from the 

4 For a configuration consisting of a set S of indexes, all 
subsets of S are its partial configurations 

’ The above technique generalizes to the case where multi- 
column indexes of width less than or equal to k are needed, by 
performing k-l iterations. 
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server and analyzes the given workload to determine a set of 
admissible indexes. We have modified SQL Server to 
support creation of what-if indexes, i.e., for a given what-if 
(hypothetical) index, the server makes available to the 
optimizer the distribution information of the column(s) over 
which the index is defined. This enables the optimizer to 
estimate costs of queries over configurations containing 
hypothetical indexes. When the tool needs to evaluate the 
workload for a configuration C, it “simulates” the presence 
of C for the query optimizer by loading the catalog tables of 
SQL Server with the distribution information of indexes in 
C. It then submits the queries in the workload to the 
optimizer in a batch. Batching not only reduces the 
communication overhead per query, but also ensures that the 
loading of distribution information for a given configuration 
needs to be done exactly once. The queries are optimized in 
the “no-execute” mode, and the optimizer returns a plan and 
a cost estimate for each query. 

The cost of gathering distribution information can 
be amortized over multiple executions of the tool and 
multiple workloads, since the statistics need to be gathered 
only once per index. Details of creating and simulating 
“what-if’ indexes, and the necessary changes to the server, 
will be described in a future paper. The tool must be run with 
administrator privileges since it needs to update system 
catalogs. The index selection tool is accompanied by a 
design assistant tool which can be used to analyze the current 
design using cost based techniques similar to those used by 
the index selection tool [CN97]. 

7.2 Experimental Setup 
We have tested our tool on several schemas and 

workloads including synthetically generated schemas and 
workloads. Due to space constraints, we report results of our 
experiments on five representative workloads of the TIC-D 
schema only. Table 1 summarizes relevant characteristics of 
the workloads. 

Table 1. Summary of workloads. 

The first four workloads were generated using a 
synthetic workload generation program. This program has 
the ability to vary a number of parameters including 
percentage of update statements, number of joins in a query, 
selectivity of conditions, and frequency of conditions on a 
column. TPCD-1 consists of 0, 1, and 2-join queries only, 
whereas TPCD-2 consists of 3, 4, and 5-join queries. 
TPCD3 and TPCDQ differ in the percentage of update 
statements in the workload. TPCD-0 is a workload 
consisting of the set of 17 TPC-D queries as specified in the 
benchmark. In our experiments, we considered multi-column 
indexes (of width two) along with single column indexes as 

possible structures of indexes. The last column of Table 1 
shows the total number of admissible indexes for each 
workload. Unless otherwise stated, the numbers we report 
are for the case when the tool was asked to select ten 
indexes. 

7.3 Experiments 
7.3.1 Candidate Index Selection 

To evaluate the performance of the query-specific- 
best-configuration algorithm (denoted as BEST-CONF) for 
picking candidate indexes, we compared the total number of 
candidate indexes picked by the algorithm with the number 
of admissible indexes” considered by our algorithm for the 
workload. Figure 6 shows that for each workload, the 
number of candidate indexes chosen by the BEST-CONF 
algorithm is significantly smaller than the number of 
admissible indexes for that workload. 

We found no degradation in quality of the final 
configuration picked by the index selection tool when the 
BEST-CONF algorithm is used (even for the update 
intensive workload TPCD-4). To provide insight into the 
characteristics of BEST-CONF, we considered two variants, 
BEST-CONF-1, and BEST-CONF-2, that choose at most 
one (and respectively two) candidate index(es) for each 
query in the workload. Table 2 underscores the importance 
of the strategy used in BEST-CONF of including indexes in 
the “best” configuration for each query without any 
predetermined bound for reasons explained in Section 4. 
Overall, the results of these experiments clearly bring out the 
effectiveness of our candidate index selection algorithm. 
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Figure 6. Performance of candidate index 
selection algorithm. 

Table 2. Drop in quality of final 
configuration. 

6 Note that the number of admissible indexes passing through 
the candidate index selection module is less than the total 
number of admissible indexes for the workload, since not all 
two-column indexes are selected for the second iteration. 
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7.3.2 Effectiveness of Query Processor Based 
Restrictions on Atomic Configurations 

In this experiment we show the effectiveness of 
using the cost estimates based on single-join atomic 
configurations described in Section 3.2.1. We refer to this 
pruning technique as SJ in the figures below. We compare 
SJ against the cost estimations that do not use any query 
processor constraints. We refer to the latter as MJ. Figure 7 
shows the comparison in the number of atomic 
configurations evaluated by SJ and MJ. For TPCD-1, the 
reduction in atomic configurations using SJ is not very large 
since the workload consists of only 0, 1, and 2-join queries. 
However, the benefits of SJ for TPCD-2, which consists of 
3, 4 and 5-join queries, and for TPCD-0 which consists of 
many complex queries are 50% and 61% respectively. We 
conclude that for workloads with large join queries, SJ can 
significantly reduce the number of configurations evaluated. 
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Figure 7. Number of atomic configurations for SJ vs. 
MJ. 
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Figure 8. Drop in quality when using SJ as 
compared to MJ for TPCD-2. 

We now compare the quality of the configuration 
picked for each workload when using SJ and MJ 
respectively. Our results show that when asked to pick 10 
indexes (k = IO), the configuration picked when using SJ 
was identical to that picked using MJ. To provide intuition 
on why SJ performs well, we designed an experiment where 
the tool was invoked repeatedly with the number of indexes 
picked (k) being varied from 2 to 10 for the TPCD-2 
workload. Figure 8 shows that for 2 <= k <= 5, the resulting 
configurations using SJ and MJ were the same. However, 
the sixth index that is picked when using MJ is the ninth 
index picked when using S J. Hence for 6 <=k c=8, using SJ 
caused a drop in quality. The intuitive explanation for this 
behavior is that when k is small, the “obviously” good 

indexes are selected in both cases. When k is large, most 
indexes that provide any benefit will be included. It is in the 
“middle” range of k that we can expect deviation between SJ 
and MJ. We note however, that the maximum drop in quality 
is quite small (7%). Similar results were observed for other 
workloads. We conclude that query processor based 
restrictions provide a reasonable method of restricting the set 
of atomic configurations that need to be evaluated for a 
workload. 

7.3.3 Reducing calls to the optimizer. 
This experiment shows the extent to which the 

number of calls to the optimizer can be reduced through the 
optimizations discussed in Section 3.3. We found that the 
total reduction in optimizer calls across the workloads varied 
from 79% to 92%. While most of the savings were due to 
irrelevant index set optimization (58%-84%), relevant index 
set optimization further reduced the number of optimizer 
calls by 9%-29%. The experiment shows that these 
optimizations are truly significant. 

7.3.4 Performance of Greedy vs. Optimal 
In this experiment we compare Greedy (2, k) with 

the naive enumeration algorithm (discussed in Section 5). 
The ndive enumeration algorithm does an exhaustive search 
of the configuration space and therefore finds the optimal 
configuration of a given size (we refer to this as Optimal). In 
each case Greedy and Optimal were asked to pick 4 indexes 
(k=4). The experiments were run without the query- 
processor-based-restrictions on atomic configuration, to 
ensure that accurate information of atomic configuration 
costs were available. 

We observed that the fraction of configurations 
enumerated by Greedy as compared to Optimal varied from 
2% to 7% for the different workloads Re@;rll! that Greedy (2, 
k) starts by co-g an optimal configuration of size two. 
Nonetheless, when asked to pick four indexes, the exhaustive 
nature of the Optimal causes it to explore a much larger 
space of configurations than Greedy. In all but one workload, 
using Greedy did not compromise optimality. The one 
counter-example was TPCD-4 (an update intensive 
workload) in which Optimal chose a different clustered index 
for the lineitem table than Greedy. However, the absolute 
difference in cost between the optimal configuration and the 
one chosen by Greedy was very small (c 1%). 

Our conclusion based on this experiment (and our 
experience with Greedy on other databases and workloads) is 
that Greedy (2, k) does very well for a large variety of 
workloads over Microsoft SQL Server. 

7.3.5 Multi-Column Index Generation 
We compared the algorithms for selecting 

admissible multi-column indexes that are described in 
Section 6. Figure 9 shows the number of admissible multi- 
column indexes picked by each algorithm. 

We note that for most workloads, both techniques 
substantially reduce the number of admissible multi-column 
indexes picked when compared to MC-BASIC. Table 3 
shows that MC-LEAD performs very well when compared 
with MC-BASIC, whereas MC-ALL suffers a noticeable 
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drop in quality for two workloads. The success of MC- 
LEAD confirms the intuition that even if a single column 
index on column a is not a “winner”, its interaction with 
another (winning) column b can be significant enough to 
make a multi-column index M (6, a) attractive. MC-LEAD 
fails only when neither a nor b is important as a single 
column index, but M (a, b) is important. We expect that such 
cases are relatively rare; and even when they do occur, their 
impact on the total cost is fairly small in practice as can be 
seen for TPCD-2 and TPCD-0. 
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Figure 9. Number of admissible multi- 
column indexes. 

MC-LEAD MC -ALL 
TPCDJ 0% 0% 
TPCD-2 6% 18% 
TPCD3 0% 2% 
TPCD-4 0% 5% 
TPCD-0 2% 14% 

Table 3. Drop in quality of configuration chosen 
compared to MC-BASIC 

7.4 Putting It All Together 
In this section we summarize our algorithm for index 

selection: 

1. Run the query-specific-best-configuration 
algorithm for identifying candidate indexes. This 
requires splitting the given workload of n queries 
into n workloads of one query each, and finding the 
best configuration for each query. The union of 
these configurations is the candidate index set for 
Step 2. 

2. Run the Greedy (m, k) algorithm to enumerate 
configurations subject to the single-join atomic 
configuration pruning technique and select a set of 
indexes until the required number of indexes have 
been picked or total cost can be reduced no further. 
We found that m=2 produced very good solutions. 

3. Select a set of admissible multi-column indexes 
using the technique MC-LEAD, based on single- 
column indexes picked in Step 2. 

4. Repeat steps 1 and 2 starting with the admissible 
index set consisting of single-column indexes that 
were chosen in Step 2, and multi-column indexes 
selected in Step 3. 

We now compare the performance of our algorithm 
described above with a “baseline” algorithm. The baseline 
algorithm differs from our algorithm in that is non-iterative 
and it does not execute the candidate index selection step. It 
therefore considers all admissible indexes for the workload 
(including multi-column indexes) during enumeration. It 
runs the Greedy (2, k) algorithm, but without imposing any 
query processor based restrictions on atomic configurations. 
Table 4 shows that in every important category (number of 
candidate indexes, number of optimizer calls, number of 
configurations enumerated), our algorithm does significantly 
less work than the baseline algorithm. The overall running 
time of our algorithm improves by a factor of 4 to 10 over 
the baseline algorithm. Moreover, as the final column of 
Table 4 shows, the drop in quality of the final configuration 
picked by our algorithm is very small’. 

Table 4. Comparison of index selection algorithm to 
“baseline” algorithm. 

8. Related Work 
There is a substantial body of literature on physical 

database design dating back to the early 70’s. In this section, 
we briefly review representatives of the major directions of 
work. Previous work in index selection that takes into 
account workload information can be divided into the 
following two categories: (1) identifying a set of possible 
indexes and configurations for the given workload (2) 
searching over the space of possible indexes. 

The problem of identifying a set of possible indexes 
has been looked at from two angles. Syntactic analysis of the 
workload is used to identify potentially useful indexes. This 
is the approach taken in [FST88, HC76]. In [FON92], an 
alternative approach is to generate the set of all 
configurations for each query that may be potentially used by 
the optimizer and then choose among the union of all such 
configurations over the queries in the workload. This 
technique is not scalable for large workloads. The framework 
by Rozen and Shasha [RS91] suggests generation of a set of 
candidate configurations for each query based on a 
knowledge-based approach. The set of configurations 
explored is the union of only those configurations. This idea 
has been further pursued by [CBC, CBC931 who propose a 
rule-based framework. The knowledge-based approach has 
also been taken in the commercial product RdbExpert [HE 
911. Our approach to candidate index selection (Section 4) is 
distinct from these approaches. 

’ The observed deviation from the baseline algorithm occurred 
because of our approximation for dealing with multi-column 
indexes. Figure 10. Summary of index selection algorithm 
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The problem of selecting a configuration from the set of 
candidate indexes has two aspects. First, a cost function to 
characterize the goodness of a configuration is needed. In our 
approach and in [FST88], optimizer-cost driven estimates are 
used. An approximate “stand-alone” cost model is used in 
[HC76, CBC]. Next, an efficient search technique that does 
not compromise the quality of the solution is needed. 
Several greedy-like search algorithms have been proposed in 
the past. More recently, several variants of greedy algorithms 
have also been recommended in the context of the 
materialized view and index selection problem. In particular, 
[HRU96, GHRU97] show bounds on the deviation of the 
greedy from the optimal. However, their results assume 
monotonicity, i.e., inclusion of one index does not have any 
impact on the effectiveness of another. By exploiting the 
exhaustive phase of Greedy (m, k), we have been able to 
capture some of the significant index interactions that a 
traditional greedy algorithm is unable to capture. 

9. Conclusion 
Index selection is one important aspect of physical 

database design. In this paper we have described our work on 
the design and implementation of an index selection tool for 
Microsoft SQL Server. The effectiveness of our algorithm 
for index selection can be attributed to three novel 
techniques that we present in this paper: 

l Query-specific-best-configuration algorithm for 
choosing candidate indexes. 

. An algorithm to reduce the number of atomic 
configurations (and hence number of optimizer 
calls) tti mnst be evaluated for a workIo;d 

@ An iterative technique for handling multi-column 
indexes. 

Our experimental results show that using these 
techniques can increase the overall efficiency of the tool by a 
factor of 4 to 10 without significantly compromising the 
quality of indexes selected. Our future work will explore 
techniques to choose other structures (e.g., join indexes and 
materialized views) for physical database design in addition 
to indexes. 
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