
An Efficient, Cost-Driven Index Selection Tool for Microsoft SQL Server

Surajit Chaudhuri Vivek Nqasayya
Microsoft Research, One Microsoft Way, Redmond, WA, 98052.

{surajitc, viveknar}@microsoft.com

Abstract
In this paper we describe novel techniques that make it
possible to build an industrial-strength tool for automating
the choice of indexes in the physical design of a SQL
database. The tool takes as input a workload of SQL queries,
and suggests a set of suitable indexes. We ensure that the
indexes chosen are effective in reducing the cost of the
workload by keeping the index selection tool and the query
optimizer “in step”. The number of index sets that must be
evaluated to find the optimal configuration is very large. We
reduce the complexity of this problem using three
techniques. First, we remove a large number of spurious
indexes from consideration by taking into account both query
syntax and cost information. Second, we introduce
optimizations that make it possible to cheaply evaluate the
“goodness” of an index set. Third, we describe an iterative
approach to handle the complexity arising from multi-
column indexes. The tool has been implemented on
Microsoft SQL Server 7.0. We performed extensive
experiments over a range of workloads, including TIC-D.
The results indicate that the tool is efficient and its choices
are close to optimal.

1. Introduction
Enterprise-class databases require database

administrators who are responsible for performance tuning.
With large-scale deployment of databases, minimizing
database administration function becomes important. We
started the AutoAdmin research project at Microsoft to
investigate new techniques to self-tune and self-administer
database systems to achieve performance competitive with
that of systems that are cared for by database administrators.
One important task of a database administrator is selecting a
physical database design appropriate for the workload of the
system. An important part of physical database design is
selecting indexes. In this paper, we present the novel
technique that we have developed in the AutoAdmin project
to automate the task of selecting a set of indexes.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the
Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

The index selection problem has been studied since
the early 70’s and the importance of the problem is well
recognized. Despite a long history of work in this area, there
are few research prototypes and commercial products that are
widely deployed. Three basic approaches have been taken to
the index selection problem. The “textbook solutions”
KG931 take semantic information such as uniqueness,
reference constraints and rudimentary statistics (“small” vs.
“big” tables) and produce a database design. Such designs
may perform poorly because they ignore valuable workload
information. The second class of tools adopt an expert
system like approach, where the knowledge of “good”
designs are encoded as rules and are used to come up with a
design. Such tools can take into account workload
information but suffer from being disconnected from the
query optimizer [HE91]. This has adverse ramifications for
two reasons. First, a selection of indexes is only as good as
the optimizer that uses it. In other words, if the optimizer
does not consider a particular index for a query, then its
presence in the database does not benefit that query. Second,
these tools operate on their own model of the query
optimizer’s index usage. While making an accurate model is
itself hard, ensuring consistency between the tool and an
evolving optimizer is a software-engineering nightmare.

In the third approach, the index selection tool uses the
optimizer’s cost estimates to compare goodness of
alternative hypothetical designs. This approach avoids
asynchrony between the index selection tool and the query
optimizer. This is the approach we have adopted (also
adopted in [FST88]).

1.1 Our Contributions
The AutoAdmin index selection tool that we describe in

this paper is significant in several ways. First, we have
recognized that index selection is more than just a difficult
search problem. Therefore, we have taken an end to end
systems approach in identifying the building blocks of an
index selection tool, when the tool uses the optimizer’s cost
estimates. Implementing the index selection tool has given us
a good understanding of the architectural and system level
issues. Second, we use a novel search technique that filters
out spurious indexes in an early stage and exploits
characteristics of the relational query engine to reduce the
cost of selecting indexes. Another novelty of our search
technique is exploring the space of alternative indexes in an
iterative way such that more complex alternatives (e.g.,
multi-column indexes) are generated from “good” simpler
alternatives (e.g., single-column indexes). Finally, since we
have fully implemented our tool on Microsoft SQL Server
7.0 (with necessary server changes), we are able to present
extensive experimental results. These results demonstrate

146

that our proposed techniques result in an improvement by a
factor of 4 to 10 in the search time, without significantly
sacrificing the quality of the result. The experimental results
complement our intuition on the effectiveness of the
strategies proposed in the paper.

2. Overview of Our Approach
2.1 Problem Statement

Our goal is to pick a set of indexes that is suitable for a
given database and workload. An index can be single-column
or multi-column. An index may be either clustered or non-
clustered, although over any single table, there can be at
most one clustered index. A workload consists of a set of
SQL data manipulation statements, i.e., Select, Insert, Delete
and Update. In this paper we use the term configuration to
mean a set of indexes. We define the size of a configuration
as the number of indexes in the configuration.

To pick a configuration, we must be able to compare the
relative goodness of any two configurations. Given a
configuration and a workload, we use the sum of the
optimizer estimated costs for all the SQL statements in the
workload as the metric of goodness. We refer to this metric
as the total cost of a configuration. Given a workload, a
configuration that has the least value of total cost is called
the optimal configuration. The goal of an index selection
tool is to pick a configuration that is optimal or as close to
optimal as possible. The index selection process is subject to
constraints, e.g., an upper bound on the number of indexes or
storage space. In this paper, we describe our technique to
deal with the problem of picking a configuration subject to
an upper bound on the number of indexes.

2.2 Architecture of the Index Selection Tool
An overview of the architecture of our index selection

tool is presented in Figure 1. The dotted line in the figure
denotes the process boundary between the tool and SQL
Server. The index selection tool takes as input a workload on
a specified database. The tool has a basic search algorithm,
which iteratively picks more complex index structures. In the
first iteration, the tool considers only single-column indexes;
in the second iteration it considers single and two-column
indexes, and so on. The search algorithm derives its
efficiency from each of its three modules. First, the
candidate index selection module (Section 4) eliminates
from further consideration, a large number of indexes that
provide little or no benefit for any query in the workload.
The configuration enumeration module (Section 5)
intelligently searches the space of subsets of candidate
indexes and picks a configuration with low total cost. The
multi-column index generation module selects multi-column
indexes to be considered in the next iteration along with the
indexes chosen by the configuration enumeration module.
The tool has been designed so that any of these modules can
be replaced with a newer or improved version, without
having to change any of the remaining modules.

Any index selection tool that bases its choices on
optimizer cost estimates requires the ability to evaluate the
workload for a given configuration. This service is provided
in our architecture by the cost-evaluation module (Section

3). This module maintains the cost table information shown
in Figure 2. The cost-evaluation module performs
optimizations so that it needs to invoke the optimizer only
for a selected subset of the configurations. Since an index
considered by the search algorithm may not be present in the
database, the tool also requires the ability to “simulate” the
presence of the index in the database for the optimizer. The
“what-if” index creation module provides the tool with an
interface for specifying this requirement. We have modified
SQL Server to support the creation and loading of a “what-
if’ index. A detailed discussion of the required changes to
the server is beyond the scope of this paper.

1 Candiftei;dex 11
“What-
if’ Index
Creation

Configumtion
Enumemtion

cost
Evaluation

SQL
Server

- Selectiod Tool
Figure 1 Architecture of Index

Queries + Total Cost

Config

1
Cost(q,c)

There are three important measures of the eficiency
of an index selection tool: (1) The number of indexes
considered by the tool for a given workload. (2) The number
of configurations that are enumerated by the index selection
tool. (3) The number of optimizer invocations necessary to
evaluate the total cost for each enumerated configuration.
Any solution to the index selection problem has to be judged
by its efficiency as well as by its quality (how close the
solution is to the optimal). As we will show in this paper, an
index selection tool can be made efficient through well-

designed algorithms, without significantly reducing the
quality.

2.3 Preliminaries
Indexable columns identify columns in a query that

are potentially useful for indexing. We present a simple
definition of indexable columns here. Indexable columns
form the basis for defining admissible indexes of a workload
which identify the set of all potentially useful indexes for a
workload and provide the starting point for the index
selection tool which picks a subset of these indexes. These
definitions can be easily modified without affecting the rest
of the index selection tool. In the following definitions, we
refer to SQL DML statement and “Query” interchangeably.

Definitions:
(i) An indexable column for a query in the workload is a
column R.a such that there is a condition of the form R.a
operator Expression in the WHERE clause. The operator
must be among { =, <, >, <=, >=, BETWEEN, IN}.
Columns in GROUP BY and ORDER BY clauses are also
considered indexable. For an Update query, the updated
columns of the table are considered indexable.
(ii) An admissible index for a query is an index that is on one
or more (in case of a multi-column index) indexable columns
of the query.
(iii) An admissible index for a workload is an index that is an
admissible index for one or more queries in the workload.

Example 1: Indexable Columns of a Query
Consider the following query Qi:
SELECT * FROM onektup, tenktupl
WHERE (onektup.uniquel = tenktupl .uniquel)
AND (tenktup 1 .unique2 between 0 and 1000)
From the above definition, it follows that the indexable
columns of Q, are (onektup.uniquel, tenktupl unique1 ,
tenktup 1 .unique2).

3. Cost Evaluation
In the naive approach to evaluating a configuration,

the cost-evaluator asks the optimizer for a cost estimate for
each query in the workload. Thus, if there are M
configurations and Q queries in the workload, such
estimation requires asking the SQL Server to optimize M*Q
queries. Invoking the optimizer many times can be expensive
(despite batching the invocations), since it requires
communication across process boundaries between the tool
and the server. In this section, we present techniques that
result in significantly reducing the number of optimizer calls
through the concept of atomic configurations (cf. [FST 881).

Intuitively, a configuration C is atomic for a
workload if for some query in the workload there is a
possible execution of the query by the query engine that uses
all indexes in C. In Section 3.1, we show that if a
configuration is not atomic for the workload, then we can
derive the cost of queries for that configuration accurately.
Therefore, instead of having to evaluate all M configurations
(over the space of admissible indexes of the workload), it is
sufficient to ask the optimizer to evaluate only M’

configurations among M, as long as all atomic configurations
are included in M’. Identifying which configurations are to
be included among M’ is crucial for the accuracy and
efficiency of the tool, and we present two techniques for this
in Section 3.2.

Another way to reduce optimizer invocation is to
exploit the fact that not every atomic configuration needs to
be evaluated for every query in the workload. In particular,
we may be able to estimate the cost of a query Q for an
atomic configuration C by using the cost of the query for a
“simpler” configuration C’. Section 3.3 describes this
optimization.

3.1 Deriving Cost of a Configuration from Atomic
Configurations

Let us assume that C is a configuration that is not
atomic and Q is a Select/Update query in the workload.
Consider all atomic configurations Ci of Q that are subsets of
C. One of these configurations must be chosen by the
optimizer while optimizing Q. Therefore, a well-behaved
optimizer will choose the atomic configuration from the
above set that has the minimal cost. Therefore, we can derive
Cost (Q, C) = Mini (Cost(Q, Ci)} without invoking the
optimizer. Furthermore, since for a Select query, inclusion of
an index in a configuration can only reduce cost, it will
suffice to take the minimum cost over the largest atomic
configurations of Q that are subsets of C.

If Q is an Insert/Delete Query, the analysis is more
complex. The cost of an Insert/Delete query for a non-atomic
configuration C, can be divided in three components. (a)
Cost of selection (b) Cost of updating the table and the
indexes that may be used for selection and (c) Cost for
updating indexes that do not affect the selection cost. We
note that the cost for updating each index in (c) is
independent of each other and can be assumed to be
independent of the plan chosen for (a) and (b). Therefore, the
optimizer will pick a plan that minimizes costs for (a) and
(b). As in a Select/Update query, we can derive T, the
minimum of the costs over all atomic configurations of Q
that are subsets of C to reflect the components (a) and (b) of
Cost (Q, C) . To get the cost of updating an index I that is in
(c), we look up (Cost (Q, (I]) - Cost (Q, { }). Thus we can
estimate the total cost by: T + & (Cost (Q, [Ii)) - Cost (Q,
())) without invoking the optimizer for C.

3.2 Identifying Atomic Configurations
In this section we address the important issue of

identifying atomic configurations for a workload. The total
number of atomic configurations can be very large. In
particular, for multi-table queries the number of atomic
configurations is exponential in the number of tables. The
next two sections describe techniques for heuristically
reducing the number of atomic configurations that need to be
considered for a workload without significantly sacrificing
the accuracy of cost estimation.

3.2.1 Query Processor Based Restrictions
The characteristics of the query processor can

influence what constitutes an atomic configuration. We

.48

exploit two widely applicable considerations to restrict the
set of configurations we consider atomic.
. In any given execution of a query, the query processor

will only use no more than j indexes per table’ (for some
integer j). This restriction reflects the pragmatic that no
more than a small number of indexes’ may be
intersected to identify tuples of one relation. For query
engines that do not support index intersection, we can
strengthen this condition by requiring that no more than
one index per table appear in any atomic configuration.

. In any given execution of a multi-table query, indexes
from at most t tables need to be considered for an
atomic configuration. The intuition is that indexes used
in the first few joins of a query have the most impact on
the cost of the query.

In designing our cost evaluation module, we found that
values of j = 2 and t = 2 provide good quality solutions
while dramatically reducing the number of atomic
configurations for complex workloads. We refer to these as
single-join atomic configurations. It is the search strategy,
discussed in Section 5, which determines how and when
these atomic configurations are evaluated. In particular, they
may be evaluated “on-demand”, i.e., when we are asked to
evaluate Cost (Q, C), we evaluate all atomic configurations
that are subsets of C, which have not yet been evaluated.

It is possible for search strategies to use different
values of j and t during enumeration. In fact, we have
explored a two-tier search strategy where during the first
phase single-join atomic configurations are used. Only
indexes chosen in the first phase are considered in the second
phase but no restrictions on atomic configurations are
imposed during this phase. Due to space constraints, we
don’t discuss experimental results of this two-tier search
strategy [CN97].

Example 2. Single-join Atomic Configurations
Consider a SELECT query with conditions T,.A < 20,

T,.A = T2.B, T3.C BETWEEN [30,50], T,.C = T2.B. In this
case, one 3-table atomic configuration is (T,.A, T2.B, T3.C)
since all three indexes may be used together to answer the
query. However, due to the single-join atomic configuration
based pruning step, the above atomic configuration is not
evaluated. Rather, the cost of this query for the 3-table
configuration is estimated by taking minimum of the costs of
the atomic configurations: (T,.A, T,.B), (T,.A, T,.C), and
(T2.B, T3.C).

3.2.2 Adaptive Strategy Based on Index Interaction
Our second technique does not make assumptions about

the characteristics of the query processor. Instead it
adaptively detects atomic configurations for a workload
based on interaction among indexes. Assume that an atomic
configuration C, of size n, has already been evaluated .The
evaluated cost is compared with the derived cost (using
techniques in Section 3.1). If the evaluated cost is
significantly different from the derived cost, then it signals

’ A correlation to be precise.
,

’ Each index can either be clustered or non-clustered.

that indexes in C interact. In such cases, we will evaluate
atomic configurations of size n + 1 that extend C. We
!ormalize this intuition by the following algorithm:

1. n = 2; A = {atomic configurations of size <= 2).
2. A’={); Evaluate all configurations in A.
3. For each configuration C in A, determine if the

indexes in C interact strongly. We do this by
testing to see if the evaluated cost of the
configuration is at least x% less than its derived
cost.

4. If C meets the above condition, add all atomic
configurations of size n+l that are supersets of C
to A’.

5. If A’ = (), then exit.
ElseA=A’;n=n+l,GotoStep2.

I

Figure 3. Adaptive Detection of Relevant
Atomic Configurations.

The parameter x defines the threshold of index interaction. If
the value of x is chosen too small, the risk of too many
spurious atomic configurations being chosen in Step 4 is
high. On the other hand, if x is too large, interaction among
indexes can go undetected. Therefore, for the algorithm to
perform well, choosing an appropriate value of x is
important. Due to space constraints, we are unable to provide
details on how to choose x; we defer this discussion and the
experimental results to [CN97].

3.3 Reducing the Cost of Evaluating Atomic
Configurations

When evaluating an atomic configuration,
substantial savings are possible in the number of optimizer
calls by the following optimization. The idea is that when
asked to evaluate Cost (Q, C), we find a “simpler” atomic
configuration C’ such that Cost (Q, C) = Cost (Q, C’).
Assume that the set of indexable columns for the
Select/Update query Q’ is P. Then, only indexes in C that
are on one or more cohunns in the set P have effect on the
cost of the query Q. If C’ is the configuration consisting of
only such indexes then Cost (Q, C) = Cost (Q, C’). If Cost
(Q, C’) has already been evaluated, we can simply reuse the
cost. We refer to this step as the relevant index set
optimization. An extreme case of relevant index set
optimization occurs where the relevant set is empty. In this
case, the estimated cost for the query is the same as that over
a database with no indexes. We call this the irrelevant index
set optimization.

Example 3: Reducing calh to the optimizer
Consider the following query QZ:
SELECT * FROM onektup WHERE unique1 < 100

Assume that I, is an index on onektup.uniquel and
I2 is an index on tenktupl .uniquel; we wish to evaluate the
configuration C = {I,, I*}. The indexable columns of Qz are

3 Similar arguments apply for Insert/Delete queries. Details are
available in [CN97].

149

{ onektup.uniquel }. Following the above optimization
technique, Cost (Qz, C) = Cost (Qa, (I,}). If Cost (QZ, {I,})
has been evaluated previously, then we save an optimizer
invocation.

4. Candidate Index Selection
If we consider every admissible index of the

workload, then too many spurious indexes will be
considered, resulting in a blow up of the space of
configurations that must be enumerated. We now describe
our algorithm for picking the set of candidate indexes from
the space of admissible indexes.

The idea is to determine the best configuration for
each query independently, and consider all indexes that
belong to one or more of these best configurations as the
candidate index set. The intuition behind this algorithm is
that an index that is not part of the best design for even a
single query in the workload, is unlikely to be part of the best
design for the entire workload. We refer to this technique as
the query-specific-best-configuration candidate index
selection algorithm. The challenge, therefore, is to determine
the best configuration for each query Q in the workload.

We now make a key observation about choosing
the best configuration for a query: the problem is no different
than the overall problem of index selection itself, the
difference is that the workload consists of exactly one query.
We can therefore obtain the best configuration for each
configuration by using the index selection tool itself! We
now elaborate on this technique.

Let the workload W be (Q,, .., Qn). The enumeration
step (described in Section 5) picks the final set of k indexes
by enumerating configurations over a set, CI, of candidate
indexes. We denote this step by Enumerate(k, CI, W) where
CI is the set of candidate indexes. When there are no bounds
on k, we designate the step by Enumerate (CI, W). Let Ii
denote the indexable columns of the query Qj. We describe
the algorithm in Figure 4 using these notations.

Step 2 of the algorithm shows that for the purpose
of determining candidate indexes, we consider all indexable
columns of the query as candidates. This is how we avoid
“cyclic dependence” on the candidate index selection
module.

1. For the given workload W that consists of n
queries, we generate n workloads W,..W,, each
consisting of one query each, where Wi = { Qi}

2. For each workload Wi, we use the set of
indexable columns Ii of the query in Wi as
starting candidate indexes.

3. Let Ci be the configuration picked by index
selection tool for Wi, i.e., Ci = Enumerate (Ii,
wi).

4. The candidate index set for W is the union of all
ci’s.

Figure 4. Candidate index selection algorithm

We comment on several properties of this
algorithm. First, if the workload is free of updates (including
insert and delete statements), and if we do not impose any
bound on the number of indexes that may be chosen, then the
configuration chosen by this algorithm has less or equal total
cost for the workload compared to any other configuration.
However, if the workload contains updates or if there is a
bound on the number of indexes to be chosen by the
algorithm, then this guarantee does not hold. For example,
say that the workload consists of a query Q with two
indexable columns TiCi and T2.CZ, and an insert query U on
T, such that the best configuration for Q consists of an index
on TiCi only. In such a case, if the index maintenance cost
predicted for U is high, then it is possible for the index
selection tool to not recommend any index since the
enumeration phase will not consider T& Such situations
result in inappropriate pruning. A similar observation may be
made when we restrict the number of indexes to chosen by
the above candidate index selection algorithm.

Although generalizations of the algorithm are
possible to account for these observations (e.g. modifying
Step 3 to pick the “next best” or the top few configuration(s)
as well), the basic scheme did very well on a variety of
workloads, including those with updates. This is due to a
couple of factors. First, indexes that are part of the “next
best” configuration of a query may appear as the best
configuration for another query in the workload. Also, when
there are multiple indexes selected in the best configuration,
there may be considerable overlap between indexes in the
best and the “next best” configurations. Finally, since Step 3
of the algorithm picks configurations without a bound on the
number of indexes, we expect that most indexes from the
“next best” configurations will also find their way into the set
of candidate indexes.

5. Configuration Enumeration
If there are n candidate indexes, and the tool is

asked to pick k indexes, a n&e enumeration algorithm
would enumerate all subsets of the candidate indexes of size
k or less, and pick the one with lowest total cost. The ndive
enumeration algorithm guarantees an optimal solution;
however, it is not practical, since for realistic values of n and
k (e.g., n=40 and k=lO) the number of configurations
enumerated is too large to make exhaustive enumeration
feasible.

1. Let S = the best m index configuration using the
nui:ve enumeration algorithm. If m = k then exit.

2. Pick a new index I such that Cost (S U {I}, W)
c= Cost(S U(I’ }, W) for any choice of I’ != I

3. If Cost (S U {I}) >= Cost(S) then exit
Else S = S U (I}

4. If ISI = k then exit
5. Got.02

Figure 5. The Greedy@, k) enumeration algorithm

Our approach to the configuration enumeration
problem is to use the Greedy (m, k) algorithm, shown in

150

Figure 5. The algorithm picks an optimal configuration of
size m (where m <= k) as the “seed”. This seed is then
expanded in a greedy fashion until all k indexes have been
chosen, or no further reduction in cost is possible by adding
an index. Each greedy step considers all possible choices for
adding one more index and adds the one resulting in the
highest cost reduction. Note that at one extreme, if the
parameter m = 0, then the algorithm takes a pure greedy
approach. On the other hand, if m = k, the algorithm is
identical to the ndive enumeration algorithm. Therefore, the
use of the algorithm is computationally efficient only if m is
small relative to k. In such a case, the enumeration exhibits
near greedy behavior. The value of m relative to k reflects
the desired degree of completeness of enumeration. The
issue of heuristically determining an appropriate value of m
depending on the index interactions among queries in the
workload is discussed in [CN97]. This measure can also be
adjusted by the user of the tool explicitly to vary the nature
of enumeration from quick and heuristic to exhaustive.
Despite the fact that a greedy algorithm can be in principle
arbitrarily bad for configuration enumeration [CN97], our
experimental results seem to indicate that a relatively low
value of m produces near-optimal resuhs

The key reason why a greedy algorithm performs
well for enumeration is that in many cases, despite
interaction among indexes, the largest cost reductions often
results from indexes that are good candidate indexes by
themselves. Nonetheless, it is important to capture
significant interactions, e.g., merge join using two clustered
indexes, single table index intersection. This justifies the
exhaustive phase of Greedy (m, k) since it helps capture
interactions that have the most significant effect on cost. For
example, observe that for any single query, the join order is
often determined primarily by sizes of intermediate relations
and presence (or absence) of a few important indexes. Once
the join order has been determined, additional indexes may
come into play, but such indexes only help reduce the cost of
a join locally, and do not strongly interact with indexes used
in other operations in the execution tree. In such cases, the
exhaustive phase of Greedy (m, k) chooses the important
interacting indexes that affect the join order and
subsequently picks the remaining indexes greedily.

A variant of the enumeration algorithm described
above uses branch-and-bound. The algorithm uses Greedy
(m, k) with a low predetermined m to generate a
configuration that serves as a first-cut solution.
Subsequently, configurations are enumerated exhaustively
with the constraint that the cost of each partial configuration4
must be within a certain factor of the cost of the
corresponding partial configuration of the first-cut (greedy)
solution. This algorithm is explained in more details and
compared with Greedy (m, k) in [CN97]

6. Multi-Column Index Generation
Index selection tools of the past have failed to take

into account the complexity arising from the inclusion of

multi-column indexes. For a given set of k columns on a
table, k! multi-column indexes are possible, and considering
all permutations can significantly increase the space of
configurations that must be considered by the tool. In this
section, we present a technique for dealing with this
complexity.

We adopt an iterative approach for taking into
account multi-column indexes of increasing width. In the
first iteration, we only consider single-column indexes.
Based on the single-column indexes picked in the first
iteration, we select a set of admissible two-column indexes.
This set of two-column indexes, along with the “winning”
single-column indexes, becomes the input for the second
iteration’. We use the notation M (a, b) to represent a two-
column index on the columns a and b where a is the leading
column of the two-column index.

Our strategy for selecting the set of two-column
indexes is based on the intuition that for a two-column index
to be desirable, a single-column index on its leading column
must also be desirable. If S is the set of single column
indexes picked in the first iteration, and a is a column such
that an index on this column is in S, then we consider the set
S’ of all admissible multi-column indexes of the form M (a,
b). No& that B ma& bean indexable column but there may
not be any index in S U is on 6. We call this algorithm
MC-LEAD.

We also considered a more aggressive v&ant of
MC-LEAD. In this variant, a two-column index M (a, b) is
considered only if the set S contains an index on a as well on
b. This algorithm is based on the assumption that for a multi-
column index M (a, b) to be important, single-column
indexes on both a and b must be important. We refer to this
algorithm as MC-ALL. Note that the set of indexes
considered by MC-ALL is a subset of the indexes considered
by MC-LEAD. In Section 7, we present a comparison of the
performance of these algorithms with the scheme where
single-column and multi-column indexes are searched
together in one pass (i.e., no iterative step). We refer to this
algorithm as MC-BASIC. The results demonstrate that MC-
LEAD is significantly superior.

These strategies for selecting candidate multi-
column indexes are closely related to the technique used by
our tool to consider indexes that help “index-only” access. In
such cases, while considering M (a, 6) above, b need not be
an indexable column, but may be part of a projection list in
the workload that is strongly correlated with the column a.
These details are presented in [CN97].

7. Implementation and Experiments
7.1 Implementation

We have implemented our index selection tool for
Microsoft SQL Server 7.0. The tool takes as input a
workload of SQL DML statements (generated using the
SQLTrace utility), and generates a set of indexes as output.
On startup, the tool gathers schema information from the

4 For a configuration consisting of a set S of indexes, all
subsets of S are its partial configurations

’ The above technique generalizes to the case where multi-
column indexes of width less than or equal to k are needed, by
performing k-l iterations.

151

server and analyzes the given workload to determine a set of
admissible indexes. We have modified SQL Server to
support creation of what-if indexes, i.e., for a given what-if
(hypothetical) index, the server makes available to the
optimizer the distribution information of the column(s) over
which the index is defined. This enables the optimizer to
estimate costs of queries over configurations containing
hypothetical indexes. When the tool needs to evaluate the
workload for a configuration C, it “simulates” the presence
of C for the query optimizer by loading the catalog tables of
SQL Server with the distribution information of indexes in
C. It then submits the queries in the workload to the
optimizer in a batch. Batching not only reduces the
communication overhead per query, but also ensures that the
loading of distribution information for a given configuration
needs to be done exactly once. The queries are optimized in
the “no-execute” mode, and the optimizer returns a plan and
a cost estimate for each query.

The cost of gathering distribution information can
be amortized over multiple executions of the tool and
multiple workloads, since the statistics need to be gathered
only once per index. Details of creating and simulating
“what-if’ indexes, and the necessary changes to the server,
will be described in a future paper. The tool must be run with
administrator privileges since it needs to update system
catalogs. The index selection tool is accompanied by a
design assistant tool which can be used to analyze the current
design using cost based techniques similar to those used by
the index selection tool [CN97].

7.2 Experimental Setup
We have tested our tool on several schemas and

workloads including synthetically generated schemas and
workloads. Due to space constraints, we report results of our
experiments on five representative workloads of the TIC-D
schema only. Table 1 summarizes relevant characteristics of
the workloads.

Table 1. Summary of workloads.

The first four workloads were generated using a
synthetic workload generation program. This program has
the ability to vary a number of parameters including
percentage of update statements, number of joins in a query,
selectivity of conditions, and frequency of conditions on a
column. TPCD-1 consists of 0, 1, and 2-join queries only,
whereas TPCD-2 consists of 3, 4, and 5-join queries.
TPCD3 and TPCDQ differ in the percentage of update
statements in the workload. TPCD-0 is a workload
consisting of the set of 17 TPC-D queries as specified in the
benchmark. In our experiments, we considered multi-column
indexes (of width two) along with single column indexes as

possible structures of indexes. The last column of Table 1
shows the total number of admissible indexes for each
workload. Unless otherwise stated, the numbers we report
are for the case when the tool was asked to select ten
indexes.

7.3 Experiments
7.3.1 Candidate Index Selection

To evaluate the performance of the query-specific-
best-configuration algorithm (denoted as BEST-CONF) for
picking candidate indexes, we compared the total number of
candidate indexes picked by the algorithm with the number
of admissible indexes” considered by our algorithm for the
workload. Figure 6 shows that for each workload, the
number of candidate indexes chosen by the BEST-CONF
algorithm is significantly smaller than the number of
admissible indexes for that workload.

We found no degradation in quality of the final
configuration picked by the index selection tool when the
BEST-CONF algorithm is used (even for the update
intensive workload TPCD-4). To provide insight into the
characteristics of BEST-CONF, we considered two variants,
BEST-CONF-1, and BEST-CONF-2, that choose at most
one (and respectively two) candidate index(es) for each
query in the workload. Table 2 underscores the importance
of the strategy used in BEST-CONF of including indexes in
the “best” configuration for each query without any
predetermined bound for reasons explained in Section 4.
Overall, the results of these experiments clearly bring out the
effectiveness of our candidate index selection algorithm.

#I 120, , zi 100

g 80
‘s 80

is 40
2 20

I 0

.____
/W Admissible
’ indexes

w Candidate
, indexes

Figure 6. Performance of candidate index
selection algorithm.

Table 2. Drop in quality of final
configuration.

6 Note that the number of admissible indexes passing through
the candidate index selection module is less than the total
number of admissible indexes for the workload, since not all
two-column indexes are selected for the second iteration.

152

7.3.2 Effectiveness of Query Processor Based
Restrictions on Atomic Configurations

In this experiment we show the effectiveness of
using the cost estimates based on single-join atomic
configurations described in Section 3.2.1. We refer to this
pruning technique as SJ in the figures below. We compare
SJ against the cost estimations that do not use any query
processor constraints. We refer to the latter as MJ. Figure 7
shows the comparison in the number of atomic
configurations evaluated by SJ and MJ. For TPCD-1, the
reduction in atomic configurations using SJ is not very large
since the workload consists of only 0, 1, and 2-join queries.
However, the benefits of SJ for TPCD-2, which consists of
3, 4 and 5-join queries, and for TPCD-0 which consists of
many complex queries are 50% and 61% respectively. We
conclude that for workloads with large join queries, SJ can
significantly reduce the number of configurations evaluated.

r
g 2000 > 1

Figure 7. Number of atomic configurations for SJ vs.
MJ.

234667 6 9 10

&mber of indexes picked
I

Figure 8. Drop in quality when using SJ as
compared to MJ for TPCD-2.

We now compare the quality of the configuration
picked for each workload when using SJ and MJ
respectively. Our results show that when asked to pick 10
indexes (k = IO), the configuration picked when using SJ
was identical to that picked using MJ. To provide intuition
on why SJ performs well, we designed an experiment where
the tool was invoked repeatedly with the number of indexes
picked (k) being varied from 2 to 10 for the TPCD-2
workload. Figure 8 shows that for 2 <= k <= 5, the resulting
configurations using SJ and MJ were the same. However,
the sixth index that is picked when using MJ is the ninth
index picked when using S J. Hence for 6 <=k c=8, using SJ
caused a drop in quality. The intuitive explanation for this
behavior is that when k is small, the “obviously” good

indexes are selected in both cases. When k is large, most
indexes that provide any benefit will be included. It is in the
“middle” range of k that we can expect deviation between SJ
and MJ. We note however, that the maximum drop in quality
is quite small (7%). Similar results were observed for other
workloads. We conclude that query processor based
restrictions provide a reasonable method of restricting the set
of atomic configurations that need to be evaluated for a
workload.

7.3.3 Reducing calls to the optimizer.
This experiment shows the extent to which the

number of calls to the optimizer can be reduced through the
optimizations discussed in Section 3.3. We found that the
total reduction in optimizer calls across the workloads varied
from 79% to 92%. While most of the savings were due to
irrelevant index set optimization (58%-84%), relevant index
set optimization further reduced the number of optimizer
calls by 9%-29%. The experiment shows that these
optimizations are truly significant.

7.3.4 Performance of Greedy vs. Optimal
In this experiment we compare Greedy (2, k) with

the naive enumeration algorithm (discussed in Section 5).
The ndive enumeration algorithm does an exhaustive search
of the configuration space and therefore finds the optimal
configuration of a given size (we refer to this as Optimal). In
each case Greedy and Optimal were asked to pick 4 indexes
(k=4). The experiments were run without the query-
processor-based-restrictions on atomic configuration, to
ensure that accurate information of atomic configuration
costs were available.

We observed that the fraction of configurations
enumerated by Greedy as compared to Optimal varied from
2% to 7% for the different workloads Re@;rll! that Greedy (2,
k) starts by co-g an optimal configuration of size two.
Nonetheless, when asked to pick four indexes, the exhaustive
nature of the Optimal causes it to explore a much larger
space of configurations than Greedy. In all but one workload,
using Greedy did not compromise optimality. The one
counter-example was TPCD-4 (an update intensive
workload) in which Optimal chose a different clustered index
for the lineitem table than Greedy. However, the absolute
difference in cost between the optimal configuration and the
one chosen by Greedy was very small (c 1%).

Our conclusion based on this experiment (and our
experience with Greedy on other databases and workloads) is
that Greedy (2, k) does very well for a large variety of
workloads over Microsoft SQL Server.

7.3.5 Multi-Column Index Generation
We compared the algorithms for selecting

admissible multi-column indexes that are described in
Section 6. Figure 9 shows the number of admissible multi-
column indexes picked by each algorithm.

We note that for most workloads, both techniques
substantially reduce the number of admissible multi-column
indexes picked when compared to MC-BASIC. Table 3
shows that MC-LEAD performs very well when compared
with MC-BASIC, whereas MC-ALL suffers a noticeable

153

drop in quality for two workloads. The success of MC-
LEAD confirms the intuition that even if a single column
index on column a is not a “winner”, its interaction with
another (winning) column b can be significant enough to
make a multi-column index M (6, a) attractive. MC-LEAD
fails only when neither a nor b is important as a single
column index, but M (a, b) is important. We expect that such
cases are relatively rare; and even when they do occur, their
impact on the total cost is fairly small in practice as can be
seen for TPCD-2 and TPCD-0.

6 100 .I”“‘-..---- I.-.__I_- _.-... -- I

Figure 9. Number of admissible multi-
column indexes.

MC-LEAD MC -ALL
TPCDJ 0% 0%
TPCD-2 6% 18%
TPCD3 0% 2%
TPCD-4 0% 5%
TPCD-0 2% 14%

Table 3. Drop in quality of configuration chosen
compared to MC-BASIC

7.4 Putting It All Together
In this section we summarize our algorithm for index

selection:

1. Run the query-specific-best-configuration
algorithm for identifying candidate indexes. This
requires splitting the given workload of n queries
into n workloads of one query each, and finding the
best configuration for each query. The union of
these configurations is the candidate index set for
Step 2.

2. Run the Greedy (m, k) algorithm to enumerate
configurations subject to the single-join atomic
configuration pruning technique and select a set of
indexes until the required number of indexes have
been picked or total cost can be reduced no further.
We found that m=2 produced very good solutions.

3. Select a set of admissible multi-column indexes
using the technique MC-LEAD, based on single-
column indexes picked in Step 2.

4. Repeat steps 1 and 2 starting with the admissible
index set consisting of single-column indexes that
were chosen in Step 2, and multi-column indexes
selected in Step 3.

We now compare the performance of our algorithm
described above with a “baseline” algorithm. The baseline
algorithm differs from our algorithm in that is non-iterative
and it does not execute the candidate index selection step. It
therefore considers all admissible indexes for the workload
(including multi-column indexes) during enumeration. It
runs the Greedy (2, k) algorithm, but without imposing any
query processor based restrictions on atomic configurations.
Table 4 shows that in every important category (number of
candidate indexes, number of optimizer calls, number of
configurations enumerated), our algorithm does significantly
less work than the baseline algorithm. The overall running
time of our algorithm improves by a factor of 4 to 10 over
the baseline algorithm. Moreover, as the final column of
Table 4 shows, the drop in quality of the final configuration
picked by our algorithm is very small’.

Table 4. Comparison of index selection algorithm to
“baseline” algorithm.

8. Related Work
There is a substantial body of literature on physical

database design dating back to the early 70’s. In this section,
we briefly review representatives of the major directions of
work. Previous work in index selection that takes into
account workload information can be divided into the
following two categories: (1) identifying a set of possible
indexes and configurations for the given workload (2)
searching over the space of possible indexes.

The problem of identifying a set of possible indexes
has been looked at from two angles. Syntactic analysis of the
workload is used to identify potentially useful indexes. This
is the approach taken in [FST88, HC76]. In [FON92], an
alternative approach is to generate the set of all
configurations for each query that may be potentially used by
the optimizer and then choose among the union of all such
configurations over the queries in the workload. This
technique is not scalable for large workloads. The framework
by Rozen and Shasha [RS91] suggests generation of a set of
candidate configurations for each query based on a
knowledge-based approach. The set of configurations
explored is the union of only those configurations. This idea
has been further pursued by [CBC, CBC931 who propose a
rule-based framework. The knowledge-based approach has
also been taken in the commercial product RdbExpert [HE
911. Our approach to candidate index selection (Section 4) is
distinct from these approaches.

’ The observed deviation from the baseline algorithm occurred
because of our approximation for dealing with multi-column
indexes. Figure 10. Summary of index selection algorithm

154

The problem of selecting a configuration from the set of
candidate indexes has two aspects. First, a cost function to
characterize the goodness of a configuration is needed. In our
approach and in [FST88], optimizer-cost driven estimates are
used. An approximate “stand-alone” cost model is used in
[HC76, CBC]. Next, an efficient search technique that does
not compromise the quality of the solution is needed.
Several greedy-like search algorithms have been proposed in
the past. More recently, several variants of greedy algorithms
have also been recommended in the context of the
materialized view and index selection problem. In particular,
[HRU96, GHRU97] show bounds on the deviation of the
greedy from the optimal. However, their results assume
monotonicity, i.e., inclusion of one index does not have any
impact on the effectiveness of another. By exploiting the
exhaustive phase of Greedy (m, k), we have been able to
capture some of the significant index interactions that a
traditional greedy algorithm is unable to capture.

9. Conclusion
Index selection is one important aspect of physical

database design. In this paper we have described our work on
the design and implementation of an index selection tool for
Microsoft SQL Server. The effectiveness of our algorithm
for index selection can be attributed to three novel
techniques that we present in this paper:

l Query-specific-best-configuration algorithm for
choosing candidate indexes.

. An algorithm to reduce the number of atomic
configurations (and hence number of optimizer
calls) tti mnst be evaluated for a workIo;d

@ An iterative technique for handling multi-column
indexes.

Our experimental results show that using these
techniques can increase the overall efficiency of the tool by a
factor of 4 to 10 without significantly compromising the
quality of indexes selected. Our future work will explore
techniques to choose other structures (e.g., join indexes and
materialized views) for physical database design in addition
to indexes.

References
[CBC] Choenni S., Blanken H. M., Chang T., “On the

Automation of Physical Database Design” , Proc. of ACM-
SAC, 1993.
[CBC93] Choenni S., Blanken H. M., Chanf T., “Index
Selection in Relational Databases”, Proc. of 5’ IEEE ICC1
1993.
[CG93] Peter C., Gurry M., “ORACLE Performance
Tuning”, O’Reilly & Associates, Inc. 1993.
[CN97] Chaudhuri S., Narasayya V., Physical Database
Design Assistant and Wizard for SQL Server, Microsoft
Research Technical report, in preparation, 1997
[FON92] Frank M., Omiecinski E., Navathe S., “Adaptive
and Automative Index Selection in RDBMS”, Proc. of
EDBT 92.

[FST88] Finkelstein S, Schkolnick M, Tiberio P.“Physical
Database Design for Relational Databases”, ACM TODS,
Mar 1988.
[GHRU97] Gupta H., Harinarayan V., Rajaramana A.,
Ullman J.D., “Index Selection for OLAP”, Proc. of ICDE97.
[HC76] Hammer M., Chan A., “Index Selection in a Self-
Adaptive Data Base Management System”, Proc. of
SIGMOD 76.
[HE911 Hobbs L., England K., “RdbNMS A
Comprehensive Guide”, Digital Press, 199 1.
[RSS96] Ross K. A., Srivastava D., Sudarshan S.,
“Materialized View Maintenance and Integrity Constraint
Checking: Trading Space for Time”, Proc. of SIGMOD 96.
[HRU96] Harinarayan V., Rajaramana A., Ullman J.D.,
“Implementing Data Cubes Efficiently”, Proc. of SIGMOD
96.
[LQA97] Labio W.J., Quass D., Adelberg B.. “Physical
Database Design for Data Warehouses”, Proc. of ICDE97.
[RS91] Rozen S., Shasha D. “A Framework for Automating
Physical Database Design”, Proc. of VLDB 199 1.

155

