CSE 444 Midterm Test

Spring 2007

Name:
Total time: 50’
Question 1 /40
Question 2 /30
Question 3 /30
Total /100

1 SQL [40 points]

Consider a database of social groups that allows people to become members of
groups: a person can be a member of several groups and each group maintains
a list of pictures that are accessible to all members. In addition to the groups,
the database also maintains a list of friends. The schema is:

MEMBER (personName, groupName)
PICTURE(groupName, picture) /* picture = primary key */
FRIEND (personNamel, personName2)

PICTURE stores for each picture the name of the group that owns that picture.
The FRIEND table is symmetric, i.e. if X is friend with Y then Y is friend with
X. Every person is a member of at least one group.

1.1

Write a SQL query that computes for every person the total number of pictures
they can access through their group memberships. That is, a person X can
access a picture Y if X is a member of some group Z and Z owns the picture
Y. You need to turn in a SQL query that returns a result like this:

’Fred’, 12
’Joe’, 7
’Sue’, 0
'Rick’, 9

SELECT personName, COUNT (*)

FROM member LEFT OUTER JOIN picture

ON member.groupName = picture.groupName
GROUP BY (personName)

Another solution:

SELECT personName, COUNT(DISTINCT picture)
FROM member LEFT OUTER JOIN picture
ON member.groupName = picture.groupName
GROUP BY (personName)

Note: If you use normal join instead of LEFT OUTER JOIN then you will miss
those people who cannot access any picture (e.g. Sue in the example above).

1.2

A “cool person” is one that has at least 40 friends. Write a SQL query that
returns all the cool persons in the database. You need to turn in a SQL query
that computes a list of names.

SELECT personNamel
FROM friend

GROUPBY personNamel
HAVING (COUNT(*) >= 40)

Another solution:

SELECT personNamel
FROM friend
GROUPBY personNamel
HAVING (COUNT(DISTINCT personName2) >= 40)

1.3

The marketing department has decided to recommend people to subscribe to
additional groups. However, they do not want to issue phony recommendations.
They would like to recommend to a person X to subscribe to a group Y if all
X'’s friends are members of the group Y, but X is not a member of Y. Write
a SQL query that computes for each person X the set of groups to recommend
that that person subscribes. You need to turn in a SQL query that returns a
list of (person, group) pairs.

SELECT m.personName, g.groupName
FROM member m, member g
WHERE NOT EXISTS
(SELECT *
FROM friend £
WHERE m.personName=f.personNamel
and NOT EXISTS
(SELECT *
FROM member mf
WHERE mf.personName = f.personName2
and mf.groupName = g.groupName))
EXCEPT (SELECT * FROM member)

1.4

Create a new table ACCESS(personName, picture) that lists for each person
the list of pictures that they can access. A person X can access a picture Y
either if X belongs to a group that owns Y, or of X has a friend Z who belongs
to a group that owns Y. Write SQL statements that insert the corresponding
tuples in ACCESS. You need to turn in one or more INSERT queries.

CREATE TABLE ACCESS (
personName VARCHAR(50) REFERENCES (member.personName),
picture INT REFERENCES (picture.picture))

INSERT INTO ACCESS

SELECT DISTINCT m.personName, p.picture

FROM member m, member ml, picture p, friend f
WHERE m.groupName = p.groupName OR
(ml.groupName = p.groupName AND
ml.personName = f.personName2 AND
m.personName = f.personNamel)

Another solution:

INSERT INTO ACCESS
SELECT DISTINCT m.peronsName, p.picture
FROM member m, picture p
WHERE m.groupName = p.groupName

INSERT INTO ACCESS
SELECT DISTINCT f.personNamel, p.picture
FROM friend f, member m, picture p
WHERE f.personName2 = m.personName
and m.groupName = p.groupName

Note: In the second solution, some tuples may be inserted more than once
(why?). To fix it, change the second query to

INSERT INTO ACCESS
SELECT DISTINCT f.personNamel, p.picture
FROM friend f, member m, picture p
WHERE f.personName2 = m.personName
and m.groupName = p.groupName

and not exists (select * from access a where f.personNamel=a.personname and ..

)

2 Conceptual Design [30 points]

Consider an application that needs to manage data for a travel agency. It needs
to store the following entities and relationships:

e Hotels: have attributes name, address, price
e Resorts: are Hotels, that also have an attribute minimum-stay
e Activities: have attributes name, season

e Has: is a relationship between Resorts and Activities

2.1
Design an E/R diagram for this application.

TN

Hotel
ASA_
Resort Activity

I

Assumption: activities are uniquely identified their names (you could make
other assumptions; it’s OK as long as you stated them clearly).

2.2

Write the CREATE TABLE statement for creating the SQL tables. You may choose
very simple atomic datatypes for the attributes. Indicate all keys and foreign
keys.

CREATE TABLE hotel (

name VARCHAR(50),

address VARCHAR(100) PRIMARY KEY,

price INT

);

CREATE TABLE resort (

address PRIMARY KEY REFERENCES hotel.address,
minStay INT

);

CREATE TABLE activity (

name VARCHAR(50) PRIMARY KEY,

season VARCHAR(50)

);

CREATE TABLE has (

resortAddress REFERENCES resort.address,
activityName REFERENCES activity.name

)

3 Functional dependencies and normal forms [30
points]

Consider a table R(A, B,C, D). Recall that a set of attributes X is a superkey
if XT = ABCD; a set X is a key if X is a superkey and no subset of X is a
superkey: it is closed if XT = X.

3.1

Give a set of functional dependencies that satisfies the following conditions: the
closed sets are AB, C'D, and the keys are AD and BC.

{A—-B,B—A,C—D,D—C}

Note: The question is a bit ambiguous. You cannot find a set of functional
dependencies such that AB and C'D are the ONLY closed sets and AD and BC
are the ONLY keys. In the solution above, AB and C'D are the only closed sets;
however, AC' and BD are also keys. Therefore, I also accept solutions in which
there are other closed sets and keys (i.e., as long as AB and CD are closed sets
and AC and BD are keys, you are in a good shape).

3.2

For each of the statements below indicate if they are true of false. You need to
answer only “true” or “false” and do not need to justify your answer. X and Y
denote sets of attributes.

(a) If AB is a key then ABC cannot be closed. TRUE (ABC* = ABCD in
this case).

(b) If AB is closed then ABC cannot be a key. FALSE (Consider the case
where there is only one dependency: ABC — ABCD).

(c) If X,Y are closed then X UY is closed. FALSE (Consider the case where
ther is only one dependency AB — C and X = {4},Y = {B}).

(d) If X, Y are closed then XNY is closed. TRUE (Let Z = XNY. If Z is not
closed then there is an attribute A € ZT\Z. Since A ¢ Z, either A ¢ X
or A ¢ Y. Without loss of generality, assume that A ¢ X. Remember
that A € Zt. Since Z C X, Zt C X*. Therefore, A € XT. This means
Xt # X, ie X is not closed (contradiction!)).

3.3
Consider the following FDs:

B — A
¢ — B

R(A,B,C,D)
B+ = AB # ABCD

R2(B,C,D)
C+=BC # BCD

End of paper. Good luck!

