Lecture 22:
Query Optimization

Wednesday, May 23, 2007 to
Wednesday, May 30, 2007

Outline

An example

Query optimization: algebraic laws 16.2
Cost-based optimization 16.5, 16.6
Cost estimation: 16.4

Example

Product(pname maker),Company(cnhame city)

SelectProduct.pname

From Product, Company
WhereProduct.maker<Company.cnam
and Company.city = “Seattle”

« How do we execute this query ?

Example

Product(pname maker),Company(cnhame city)
Assume:

Clustered index: Product.pname Company.cname
Unclustered index?r oduct.maker,Company.city

Logical Plan:

>
aker=cname
/ Gcity:“SeattIe”
Product Company

(pnamemaker) (cnamecity)

Physical plan 1:

Index-base
join

Index-base
selection

>
/ cname=maker
Gcity:“SeattIe”
Company Product

(chamecity) (pnamemaker)

Physical plans 2a and 2Db:

C Which one Is better ?? ~

aker=cname
/ O-c:ity:“SeattIe"
Product Company
(pnamemakerfcnamecity)

Scan and sort (2a) .
Index scan (2b)
7

Physical plan 1:

Index-base
selection

join

Index-base

x T(Product) / V(Product, maker)‘

><
/ chame=maker Total cost:
T(Company) / V(Company, city)
O-c:ity:“SeattIe"
| x T(Product) / V(Product, maker)
Company Product
(chamecity) (pnamemaker)

T(Company) / V(Company, city)

Total cost:

(2a): 3BProduct) + B(Company) | Physical plans 2a and 2b:
(2b): T(Product) + B(Company)

3B(Product)

T(Product)

NoO extra cos
>
(why ?) aker=cname

/ C|ty:“SeattIe"

Product Com pany
(pnamemakerfcnamecity)

can and sort (m
Index scan (2b >can

B(Company)

Plan 1. TCompany)/V(Company,city) X
T(Product)/V(Product,maker

Plan 2a: BCompany) + 3B([Product)

Plan 2b: BCompany) + T(Product)

_ Which one is better ??)
Q It depends on the data!!)

10

Example

T(Company) = 5,000 BCompany)=500 M =100
T(Product) = 100,000 BProduct) = 1,000

We may assume ¥Y(oduct, maker)= T(Company) (why ?)

e Case 1: VCompany, city) = T(Company)

V(Company,city) = 2,00ﬂ

e Case 2: VCompany, city) << T(Company)

V(Company,city) = 20'

11

Which Plan is Best ?

Plan 1. TCompany)/V(Company,city) x T(Product)/V(Product,maker)
Plan 2a: BCompany) + 3B(Product)
Plan 2b: BCompany) + T(Product)

Case 1.

Case 2:

12

Lessons

 Need to consider several physical plan
— even for one, simple logical plan

 No magic “best” plan: depends on the data

* In order to make the right choice

— need to havaatistics over the data
—the B’s, the T's, the V’s

13

Query Optimzation

Have a SQL query Q
Create a plan P
Find equivalent plans P =P’ =P” = ...

Choose the “cheapest”.

14

Logical Query Plan

SELECT P.buyer Purchasse(buyer, city)

FROM Purchase P, Person Q Person(name, phone)
WHERE P.buyer=Q.name AND

P.city="seattle’” AND
Q.phone > “5430000 P=

buyer

o
City='seattle’ /\phone>’5430000’

>
Buyer=name

N

Purchase Person

In class:
find a “better” plan P’

15

Logical Query Plan

SELECTcity, sum(guantity)
FROM sales

GROUP BYcity
HAVING sum(quantity) < 10

o p <100

T1(city,p)

Y city, sum(quantityy-p

sales(product, city, quantity)

In class:
find a “better” plan P’

16

The three components of an
optimizer

We need three things in an optimizer:

« Algebraic laws
* An optimization algorithm
e A cost estimator

17

Algebraic Laws (incomplete list)

e Commutative and Associlative Laws
ROS=SOR, RO(SOT)=(ROS)OT
R S=S*R, R¥K[SKT)=(RKS) KT

e Distributive Laws
R (SOT) = (RgS)OR K T)

18

Algebraic Laws (incomplete list)

e Laws involving selection:
O canpc(R) =0 (0 (R))
Ocorc(R) =0(R)U 0 (R)

 When C involves only attributes of R
0c(RKS)=0c(R)KS
0-(R-S)=0-(R)-S
0c(RKS) =0:(R)KS

19

Algebraic Laws

« Example: R(A, B, C, D), S(E, F, G)
O r=3(R K[p= S) =

O a=5 aND G=9 (R X| p=g S) =

20

Algebraic Laws

e Laws Involving projections
My(R X[S) =Mu(Me(R) X[M(S))
My(My(R)) = I_IM,N(R)

 Example R(A,B,C,D), S(E, F, G)
Mapc(R K p=g S) =M, (MAR) K| p=g [1AS))

21

Algebraic Laws

e Laws involving grouping and aggregation:

O(Ya, agg@R)) =VYa, aggefR)
Ya, agafO(R)) =VYa, aggefR) If 299 Is “duplicate insensitive”

* Which of the following are “duplicate insensitive”
sum, count, avg, min, max

yA, agg(D)(R(A’B) |><| B=C S(C’D)) =
yA, agg(D)(R(A’B) |><| B=C (VC, agg(Dﬁ(C’D)))

22

Cost-based Optimizations

e Main idea: apply algebraic laws, until
estimated cost Is minimal

* Practically: start from partial plans,
Introduce operators one by one

— Wil see In a few slides

* Problem: there are too many ways to apply
the laws, hence too many (partial) plans

23

Cost-based Optimizations

Approaches:

 Top-down: the partial plan is a top
fragment of the logical plan

e Bottom up: the partial plan is a bottom
fragment of the logical plan

24

Dynamic Programming

Originally proposed in System R (the first resegyattotype
for a relational database system -- late 70s)

« Only handles single block queries:

SELECT list
FROM list
WHERE cond AND cond, AND . . . AND cong

* Heuristics: selections down, projections up
 Dynamic programmingoin reordering

25

Join Trees

R1 K| R2 K| X| Rn
Join tree:

N/ i \N
RB/ \Rl RZ/ \R

A plan = a join tree
A partial plan = a subtree of a join tree

A4

26

Types of Join Trees

o Left deep:

27

 Bushy:

7

Types of Join Trees

///// \\\\
VAN
Rl/ \RS

28

Types of Join Trees

* Right deep:
<]

e
SN
R1 / \N
R5 /N
R2 R4

29

Dynamic Programming

 Given: aquery Rk R2x ... |xRn

 Assume we have a function cost() that gives
us the cost of every join tree

* Find the best join tree for the query

30

Dynamic Programming

dea: for each subset of {R1, ..., Rn}, compute the
pest plan for that subset

n increasing order of set cardinality:
— Step 1: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— Step n: for{R1, ..., Rn}
It IS a bottom-up strategy
A subset of {R1, ..., Rn} is also calledsabguery

31

Dynamic Programming

e For each subquery (}{R1, ..., Rn}
compute the following:

— Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

32

Dynamic Programming

e Step 1: For each {R do:
— Size({R}) = B(R;)

- Plan({R}) = R,
— Cost({R}) = (cost of scanning R

33

Dynamic Programming

e Step I: For each QKR 4, ..., R} of
cardinality 1 do:
— Compute Size(Q) (later...)
— For every pair of subqueries Q’, Q"

s.t. Q=0Q10Q"
compute cost(Plan(Q’¥] Plan(Q™))

— Cost(Q) = the smallest such cost
— Plan(Q) = the corresponding plan

34

Dynamic Programming

 Return Plan({R, ..., R})

35

Dynamic Programming

To illustrate, we will make the following
simplifications:
» Cost(R |x| P,) = Cost(R) + Cost(B) +
size(intermediate result(s))

e |Intermediate results:

— If P = ajoin, then the size of the intermediate reisult
size(R), otherwise the size is 0

— Similarly for B,
e Costofascan=0

36

Dynamic Programming

 Example:
e Cost(R9x|R7) =0 (no intermediate results)
e Cost((R2x| R1) |x] R7)

= Cost(R2x| R1) + Cost(R7) + size(RZ| R1)

= size(R2Zx| R1)

37

Dynamic Programming

 Relations: R, S, T, U
 Number of tuples: 2000, 5000, 3000, 1000
e Size estimation: T(Ax| B) = 0.01*T(A)*T(B)

38

Subquery

Size

Cost

Plan

RS

RT

RU

ST

SuU

TU

RST

RSU

RTU

STU

RSTU

39

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
SuU 50k 0 SuU
TU 30k 0 TU
RST 3M 60k (RT)S

RSU 1M 20k (RU)S
RTU 0.6M 20k (RU)T
STU 1.5M 30k (TU)S
RSTU 30M 60k+50k=110k | (RT)(SU)

40

Reducing the Search Space

o Left-linear trees v.s. Bushy trees
* Trees without cartesian product
Example: R(A,B)%| S(B,C) k| T(C,D)

Plan: (R(A,B) | T(C,D)) k| S(B,C) has a cartesian product —
most query optimizers will not consider it

41

Dynamic Programming:
Summary

 Handles only join queries:
— Selections are pushed down (i.e. early)
— Projections are pulled up (i.e. late)

 Takes exponential time in general, BUT:
— Left linear joins may reduce time
— Non-cartesian products may reduce time further

42

Rule-Based Optimizers

Extensible collection of rules
Rule = Algebraic law with a direction

Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

Volcano (later SQL Sever)
Starburst (later DB2)

43

Completing the
Physical Query Plan

e Choose algorithm to implement each
operator

— Need to account for more than cost:
« How much memory do we have ?
* Are the input operand(s) sorted ?

e Decide for each intermediate result:
— To materialize
— To pipeline

44

Materialize Intermediate Results
Between Operators

HashTable& S
repeat read(R, Xx)

y < join(HashTable, x)
// \\ write(V1, y)
HashTable& T

repeat read(V1,y)

z < join(HashTable, y)
Vl / \\ write(V2, z)

HashTable&< U

repeat read(V2, z)
u < join(HashTable, z)
write(Answer, u)

45

Materialize Intermediate Results
Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

e What is the total cost of the plan ?
— Cost =

« How much main memory do we need ?
— M=

46

Pipeline Between Operators

/4

/HashTabIelé S
HashTableZ T
HashTable3 U
repeat read(R, Xx)

y € join(HashTablel, x)
z < join(HashTable2, y)
u < join(HashTable3, z)

write(Answer, u)

47

Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

e What is the total cost of the plan ?
— Cost =

« How much main memory do we need ?
— M=

48

/x
S

Pipeline in Bushy Trees

/\

x
7y x / \\
[><] /X Z

T/ X
T | X Y

49

Example

* Logical plan is:
<

k blocks \
a u(y.2)
/ \ 10,000 blocks
R(w,X) S(x,y)
5,000 blocks 10,000 blocks

« Main memory M = 101 buffers

50

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x,y)
5,000 blocks 10,000 blocks
Nailve evaluation:
e 2 partitioned hash-joins
e Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

51

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x,y)
5,000 blocks 10,000 blocks
Smarter:
o Step 1: hash R on x into 100 buckets, each oflé€kb; to disk
o Step 2: hash S on x into 100 buckets; to disk

« Step 3: read each R memory (50 buffer) join with . §1 buffer); hash result on
y into 50 buckets (50 buffers) -- here pipeline

 Costso far: 3B(R) + 3B(S) 52

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x.y)
5,000 blocks 10,000 blocks

Continuing:

« How large are the 50 buckets ony ? Answer: k/50.

o If k <=50 then keep all 50 buckets in Step 3 emmory, then:
o Step 4: read U from disk, hash on y and join wmémory

e Total cost: 3B(R) + 3B(S) + B(U) = 55,000 53

Example

M=101
>

k blocks P4 \U(y,z)
/ \ 10,000 blocks

R(w,X) S(x.y)
5,000 blocks 10,000 blocks

Continuing:

If 50 < k <=5000 then send the 50 buckets in Steépdisk
— Each bucket has size k/50 <= 100

Step 4: partition U into 50 buckets
Step 5: read each partition and join in memory
Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,00@k

54

Example

M=101
N\
k blocks
> U(y.2)
/ \ 10,000 blocks
R(w,X) S(x.y)
o 5,000 blocks 10,000 blocks
Continuing:

« If k >5000 then materialize instead of pipeline
o 2 partitioned hash-joins
e Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

55

Example

Summary:

f k <= 50,
f 50 < k <=5000,
f k > 5000,

cost = 55,000
cost = 75,000 + 2k
cost = 75,000 + 4k

56

Size Estimation

The problem: Given an expression E, compute
T(E) and V(E, A)

* This Is hard without computing E
e Wil ‘estimate’ them instead

57

Size Estimation

Estimating the size of a projection

» Easy: T(1,(R)) = T(R)

* This Is because a projection doesn’t
eliminate duplicates

58

Size Estimation

Estimating the size of a selection

* S :GA:C(R)
— T(S) san be anything from 0 to T(R) - V(R,A) + 1
— Estimate: T(S) = T(R)/V(R,A)
— When V(R,A) is not available, estimate T(S) = T{R)

e S=0,.R)
— T(S) can be anything from 0 to T(R)
— Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R))T(R)
— When Low, High unavailable, estimate T(S) = T(R)/3

59

Size Estimation

Estimating the size of a natural join,®,|S

 \When the set of A values are disjoint, then
T(RK[,S)=0

« When Ais a key In S and a foreign key In
R, then T(R*|, S) = T(R)

 When A has a unigue value, the same In R
and S, then T(R«|, S) = T(R) T(S)

60

Size Estimation

Assumptions:

e Containment of values: if V(R,A) <= V(S,A), then the set
of A values of R is included in the set of A valugss

— Note: this indeed holds when A is a foreign keRRirand a key in
S

* Preservation of values. for any other attribute B,
V(R x| o S, B) = V(R, B) (or (S, B))

61

Size Estimation

Assume V(R,A) <= V(S,A)

« Then each tuple tin R joirsmmetuple(s) in S
— How many ?
— On average T(S)/V(S,A)
— twill contribute T(S)/V(S,A) tuples in K|, S

. Hence T(R¥|, S) = T(R) T(S) / V(S,A)

In general: T(R4|, S) = T(R) T(S) / max(V(R,A),V(S,A))

62

Size Estimation
Example:
 T(R) =10000, T(S)=20000

 V(R,A) =100, V(S,A) =200
« How largeisRx| , S ?

Answer: T(R %[, S) = 10000 20000/200 = 1M

63

Size Estimation

Joins on more than one attribute:
* T(R |X|A,B S) =

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

64

Histograms

e Statistics on data maintained by the
RDBMS

 Makes size estimation much more accurate
(hence, cost estimations are more accurate)

65

Histograms

Employee(sspname, salary, phone)

e Maintain a histogram on salary:

Salary:

0..20k

20k..40k

40k..60k

60k..80k

80k..100k

> 100k

Tuples

200

800

5000

12000

6500

500

 T(Employee) = 25000, but now we know the distnitmoit

66

Histograms

Ranks(rankName, salary)
* Estimate the size of Employeq {,,,Ranks

Employee| 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k| > 100k
200 800 5000 12000 6500 500

Ranks 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k| > 100k
8 20 40 80 100 2

67

 Eqgqwidth

 Egdepth

Histograms

0.20 | 20.40 | 40..60 | 60..80 | 80..100
2 104 9739 152 3

0.44 | 44.48 | 48..50 | 50..56 | 55..100

2000 2000 2000 2000 2000

68

