Lecture 15-16: Recovery

Wednesday-Friday, May 2-4, 2007

Announcements

Homework 3:

- Attributes v.s. elements: /item v.s. /@item
- Data is not clean
 - OK to return any sensible answer, no need to clean
- See the two examples in the mini-tutorial (e.g fn:string)
- Check the lecture notes (e.g. for group-by)
- If query doesn't work, try a simpler one to debug

Outline

- Undo logging 17.2
- Redo logging 17.3
- Redo/undo 17.4

Transaction Management

Two parts:

- Recovery from crashes: <u>A</u>CID
- Concurrency control: ACID

Both operate on the buffer pool

Recovery

From which of the events below can a database actually recover ?

- Wrong data entry
- Disk failure
- Fire / earthquake / bankrupcy /
- Systems crashes

Recovery

	Type of Crash	Prevention
	Wrong data entry	Constraints and Data cleaning
	Disk crashes	Redundancy: e.g. RAID, archive
	Fire, theft, bankruptcy	Buy insurance, Change jobs
Most frequent	System failures: e.g. power	DATABASE RECOVERY

System Failures

- Each transaction has *internal state*
- When system crashes, internal state is lost
 - Don't know which parts executed and which didn't
- Remedy: use a <u>log</u>
 - A file that records every single action of the transaction

Transactions

- Assumption: the database is composed of <u>elements</u>
 - Usually 1 element = 1 block
 - Can be smaller (=1 record) or larger (=1 relation)
- Assumption: each transaction reads/writes some elements

Primitive Operations of Transactions

- $\operatorname{READ}(X,t)$
 - copy element X to transaction local variable t
- WRITE(X,t)
 - copy transaction local variable t to element X
- INPUT(X)
 - read element X to memory buffer
- OUTPUT(X)
 - write element X to disk

Example

```
START TRANSACTION
READ(A,t);
t := t^{*}2;
WRITE(A,t);
READ(B,t);
t := t^{*}2;
WRITE(B,t)
COMMIT;
```

Atomicity: BOTH A and B are multiplied by 2

READ(A,t); t := t*2; WRITE(A,t); READ(B,t); t := t*2; WRITE(B,t)

Transaction	Buffer pool	Disk

Action	t	Mem A	Mem B	Disk A	Disk B
INPUT(A)		8		8	8
READ(A,t)	8	8		8	8
t:=t*2	16	8		8	8
WRITE(A,t)	16	16		8	8
INPUT(B)	16	16	8	8	8
READ(B,t)	8	16	8	8	8
t:=t*2	16	16	8	8	8
WRITE(B,t)	16	16	16	8	8
OUTPUT(A)	16	16	16	16	8
OUTPUT(B)	16	16	16	16	16

Action	t	Mem A	Mem B	Disk A	Disk B
INPUT(A)		8		8	8
READ(A,t)	8	8		8	8
t:=t*2	16	8		8	8
WRITE(A,t)	16	16		8	8
INPUT(B)	16	16	8	8	8
READ(B,t)	8	16	8	8	8
t:=t*2	16	16	8	8	8
WRITE(B,t)	16	16	16	8	8
OUTPUT(A)	16	16	16	16 -	Crash !
OUTPUT(B)	16	16	16	16	

Crash occurs after OUTPUT(A), before OUTPUT(B) We lose atomicity

The Log

- An append-only file containing log records
- Note: multiple transactions run concurrently, log records are interleaved
- After a system crash, use log to:
 - Redo some transaction that didn't commit
 - Undo other transactions that didn't commit
- Three kinds of logs: undo, redo, undo/redo

Undo Logging

Log records

- <START T>
 - transaction T has begun
- <COMMIT T>
 - T has committed
- <ABORT T>
 - T has aborted
- <T,X,v>
 - T has updated element X, and its <u>old</u> value was v

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	
COMMIT						<commit t=""></commit>

WHAT DO WE DO ?

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	Crash !
COMMIT						<commit t=""></commit>

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8></t,b,8>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	
COMMIT						<commit t=""></commit>

WHAT DO WE DO ?

Crash!

After Crash

- In the first example:
 - We UNDO both changes: A=8, B=8
 - The transaction is atomic, since none of its actions has been executed
- In the second example
 - We don't undo anything
 - The transaction is atomic, since both it's actions have been executed

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to disk before OUTPUT(X)

- U2: If T commits, then OUTPUT(X) must be written to disk before <COMMIT T>
- Hence: OUTPUTs are done *early*, before the transaction commits

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
INPUT(A)		8		8	8	
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8></t,a,8>
INPUT(B)	16	16	8	8	8	
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	(<t,b,8>)</t,b,8>
OUTPUT(A)	16	16		16	8	
OUTPUT(B)	16	16	16	16	16	
COMMIT						• COMMIT T
						20

After system's crash, run recovery manager

- Idea 1. Decide for each transaction T whether it is completed or not
 - <START T>....<COMMIT T>.... = yes
 - <START T>..... = yes
 - $\langle START T \rangle = no$
- Idea 2. Undo all modifications by incomplete transactions

Recovery manager:

Read log <u>from the end</u>; cases:
 <COMMIT T>: mark T as completed
 <ABORT T>: mark T as completed
 <T,X,v>: if T is not completed
 then write X=v to disk
 else ignore
 <START T>: ignore

Question1 in class: Which updates are undone ?

Question 2 in class: How far back do we need to read in the log ?

- Note: all undo commands are <u>idempotent</u>
 - If we perform them a second time, no harm is done
 - E.g. if there is a system crash during recovery, simply restart recovery from scratch

When do we stop reading the log?

- We cannot stop until we reach the beginning of the log file
- This is impractical

Instead: use checkpointing

Checkpointing

Checkpoint the database periodically

- Stop accepting new transactions
- Wait until all current transactions complete
- Flush log to disk
- Write a <CKPT> log record, flush
- Resume transactions

Undo Recovery with Checkpointing

During recovery, Can stop at first <CKPT>

h	eckpoin	ting
	 <t9,x9,v9></t9,x9,v9>	> other transactions
	 (all completed)	
	< CKPT> <start t2=""></start>	
	<start t3<="" td=""><td></td></start>	
	<start t5=""> <start t4=""></start></start>	
	<t1,x1,v1> <t5,x5,v5></t5,x5,v5></t1,x1,v1>	transactions T2,T3,T4,T5
	<t4,x4,v4> <commit t5=""></commit></t4,x4,v4>	
	<t3,x3,v3> <t2,x2,v2></t2,x2,v2></t3,x3,v3>) 27

Nonquiescent Checkpointing

- Problem with checkpointing: database freezes during checkpoint
- Would like to checkpoint while database is operational
- Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive Non-quiescent = allowing transactions to be active

Nonquiescent Checkpointing

- Write a <START CKPT(T1,...,Tk)> where T1,...,Tk are all active transactions
- Continue normal operation
- When all of T1,...,Tk have completed, write <END CKPT>

Undo Recovery with Nonquiescent Checkpointing

During recovery, Can stop at first <CKPT>

Q: why do we need <END CKPT> ?

Redo Logging

Log records

- \langle START T \rangle = transaction T has begun
- <COMMIT T> = T has committed
- <ABORT T>= T has aborted
- <T,X,v>= T has updated element X, and its <u>new</u> value is v

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,16></t,a,16>
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,16></t,b,16>
						<commit t=""></commit>
OUTPUT(A)	16	16	16	16	8	
OUTPUT(B)	16	16	16	16	16	

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and <COMMIT T> must be written to disk before OUTPUT(X)

• Hence: OUTPUTs are done *late*

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
READ(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,16></t,a,16>
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,16></t,b,16>
						- COMMIT T
OUTPUT(A)) 16	16	16		8	
OUTPUT(B)	16	16	16	16	16	

After system's crash, run recovery manager

- Step 1. Decide for each transaction T whether it is completed or not
 - <START T>....<COMMIT T>.... = yes
 - <START T>....<ABORT T>.... = yes
 - $\langle START T \rangle = no$
- Step 2. Read log from the beginning, redo all updates of *committed* transactions

Nonquiescent Checkpointing

- Write a <START CKPT(T1,...,Tk)> where T1,...,Tk are all active transactions
- Flush to disk all blocks of committed transactions (*dirty blocks*), while continuing normal operation
- When all blocks have been written, write <END CKPT>

Redo Recovery with Nonquiescent Checkpointing

Step 2: redo from the earliest start of T4, T5, T6 ignoring transactions committed earlier

Comparison Undo/Redo

- Undo logging:
 - OUTPUT must be done early
 - If <COMMIT T> is seen, T definitely has written all its data to disk (hence, don't need to redo) – inefficient
- Redo logging
 - OUTPUT must be done late
 - If <COMMIT T> is not seen, T definitely has not written any of its data to disk (hence there is not dirty data on disk, no need to undo)
 inflexible
- Would like more flexibility on when to OUTPUT: undo/redo logging (next)

Undo/Redo Logging

Log records, only one change

 <T,X,u,v>= T has updated element X, its <u>old</u> value was u, and its <u>new</u> value is v

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative to <COMMIT T>

Action	Т	Mem A	Mem B	Disk A	Disk B	Log
						<start t=""></start>
REAT(A,t)	8	8		8	8	
t:=t*2	16	8		8	8	
WRITE(A,t)	16	16		8	8	<t,a,8,16></t,a,8,16>
READ(B,t)	8	16	8	8	8	
t:=t*2	16	16	8	8	8	
WRITE(B,t)	16	16	16	8	8	<t,b,8,16></t,b,8,16>
OUTPUT(A)	16	16	16	16	8	
						<commit t=""></commit>
OUTPUT(B)	16	16	16	16	16	

Can OUTPUT whenever we want: before/after COMMIT⁴²

Recovery with Undo/Redo Log

After system's crash, run recovery manager

- Redo all committed transaction, top-down
- Undo all uncommitted transactions, bottom-up

Recovery with Undo/Redo Log

