
1

Lectures 8 and 9:
Database Design

Wednesday&Friday, April 10&12

2

Announcements/Reminders

• Homework 1: solutions are posted

• Homework 2: posted (due Friday, April 20)

• Project Phase 1 due Friday, April 12

3

Outline

• The relational data model: 3.1

• Functional dependencies: 3.4

4

Schema Refinements = Normal
Forms

• 1st Normal Form = all tables are flat

• 2nd Normal Form = obsolete

• Boyce Codd Normal Form = will study

• 3rd Normal Form = see book

5

First Normal Form (1NF)

• A database schema is in First Normal Form
if all tables are flat

3.9Carol

3.7Bob

3.8Alice

CoursesGPAName

OS

DB

Math

OS

DB

OS

Math

Student

3.9Carol

3.7Bob

3.8Alice

GPAName

Student

Course

OS

DB

Math

OSCarol

OSAlice

DBBob

Alice

Carol

Alice

Student Course

DB

Math

Math

Takes Course

May need
to add keys

6

Relational Schema Design

PersonbuysProduct

name

price name ssn

Conceptual Model:

Relational Model:
plus FD’s

Normalization:
Eliminates anomalies

7

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don’t want

8

Relational Schema Design

Anomalies:
• Redundancy = repeat data
• Update anomalies = Fred moves to “Bellevue”
• Deletion anomalies = Joe deletes his phone number:

what is his city ?

Recall set attributes (persons with several phones):

Westfield908-555-2121987-65-4321Joe

Seattle206-555-6543123-45-6789Fred

Seattle206-555-1234123-45-6789Fred

CityPhoneNumberSSNName

One person may have multiple phones, but lives in only one city

9

Relation Decomposition
Break the relation into two:

Westfield987-65-4321Joe

Seattle123-45-6789Fred

CitySSNName

908-555-2121987-65-4321

206-555-6543123-45-6789

206-555-1234123-45-6789

PhoneNumberSSN

Anomalies have gone:
• No more repeated data
• Easy to move Fred to “Bellevue” (how ?)
• Easy to delete all Joe’s phone number (how ?)

Westfield908-555-2121987-65-4321Joe

Seattle206-555-6543123-45-6789Fred

Seattle206-555-1234123-45-6789Fred

CityPhoneNumberSSNName

10

Relational Schema Design
(or Logical Design)

Main idea:

• Start with some relational schema

• Find out its functional dependencies

• Use them to design a better relational
schema

11

Functional Dependencies

• A form of constraint
– hence, part of the schema

• Finding them is part of the database design

• Also used in normalizing the relations

12

Functional Dependencies
Definition:

If two tuples agree on the attributes

then they must also agree on the attributes

Formally:

A1, A2, …, An � B1, B2, …, Bm
A1, A2, …, An � B1, B2, …, Bm

A1, A2, …, An
A1, A2, …, An

B1, B2, …, Bm
B1, B2, …, Bm

13

When Does an FD Hold

Definition: A1, ..., Am � B1, ..., Bn holds in R if:

∀t, t’ ∈ R, (t.A1=t’.A 1 ∧ ... ∧ t.Am=t’.A m ⇒ t.B1=t’.B1 ∧ ... ∧ t.Bn=t’.Bn)

Bm...B1Am...A1

if t, t’ agree here then t, t’ agree here

t

t’

R

14

Examples

EmpID � Name, Phone, Position

Position � Phone

but not Phone � Position

An FD holds, or does not holdon an instance:

Lawyer1234MaryE9999

Salesrep9876SmithE1111

Salesrep9876MikeE3542

Clerk1234SmithE0045

PositionPhoneNameEmpID

15

Example

Position � Phone

Lawyer1234MaryE9999

Salesrep9876 ←SmithE1111

Salesrep9876 ←MikeE3542

Clerk1234SmithE0045

PositionPhoneNameEmpID

16

Example

Lawyer1234 →MaryE9999

Salesrep9876SmithE1111

Salesrep9876MikeE3542

Clerk1234 →SmithE0045

PositionPhoneNameEmpID

but not Phone � Position

17

Example
FD’s are constraints:
• On some instances they hold
• On others they don’t

99ToysGreenGadgetTweaker

49ToysGreenGadgetGizmo

pricedepartmentcolorcategoryname

Does this instance satisfy all the FDs ?

name� color
category� department
color, category� price

name� color
category� department
color, category� price

18

Example

59Office-supp.GreenStationaryGizmo

99ToysBlackGadgetTweaker

49ToysGreenGadgetGizmo

pricedepartmentcolorcategoryname

What about this one ?

name� color
category� department
color, category� price

name� color
category� department
color, category� price

19

An Interesting Observation

If all these FDs are true:
name� color
category� department
color, category� price

name� color
category� department
color, category� price

Then this FD also holds: name, category� pricename, category� price

Why ??

20

Goal: Find ALL Functional
Dependencies

• Anomalies occur when certain “bad” FDs
hold

• We know some of the FDs

• Need to find all FDs, then look for the bad
ones

21

Armstrong’s Rules (1/3)

Is equivalent to

Splitting rule
and

Combing rule

Bm...B1Am...A1

A1, A2, …, An � B1, B2, …, Bm
A1, A2, …, An � B1, B2, …, Bm

A1, A2, …, An � B1

A1, A2, …, An � B2

.
A1, A2, …, An � Bm

A1, A2, …, An � B1

A1, A2, …, An � B2

.
A1, A2, …, An � Bm

22

Armstrong’s Rules (1/3)

Trivial Rule

Why ?

Am…A1

where i = 1, 2, ..., n

A1, A2, …, An � A i
A1, A2, …, An � A i

23

Armstrong’s Rules (1/3)

Transitive Closure Rule

If

and

then

Why ?

A1, A2, …, An � B1, B2, …, Bm
A1, A2, …, An � B1, B2, …, Bm

B1, B2, …, Bm � C1, C2, …, Cp
B1, B2, …, Bm � C1, C2, …, Cp

A1, A2, …, An � C1, C2, …, Cp
A1, A2, …, An � C1, C2, …, Cp

24

...C1 CpBm…B1Am…A1

25

Example (continued)

Start from the following FDs:

Infer the following FDs:

1. name� color
2. category� department
3. color, category� price

1. name� color
2. category� department
3. color, category� price

8. name, category � price

7. name, category � color, category

6. name, category � category

5. name, category � color

4. name, category � name

Which Rule
did we apply ?

Inferred FD

26

Example (continued)

Answers:

Transitivity on 3, 78. name, category � price

Split/combine on 5, 67. name, category � color, category

Trivial rule6. name, category � category

Transitivity on 4, 15. name, category � color

Trivial rule4. name, category � name

Which Rule
did we apply ?

Inferred FD

1. name� color
2. category� department
3. color, category� price

1. name� color
2. category� department
3. color, category� price

THIS IS TOO HARD ! Let’s see an easier way.

27

Closure of a set of Attributes
Given a set of attributes A1, …, An

The closure, {A 1, …, An} + = the set of attributes B
s.t. A1, …, An � B

Given a set of attributes A1, …, An

The closure, {A 1, …, An} + = the set of attributes B
s.t. A1, …, An � B

name� color
category� department
color, category� price

name� color
category� department
color, category� price

Example:

Closures:
name+ = {name, color}
{name, category}+ = {name, category, color, department, price}
color+ = {color}

28

Closure Algorithm

X={A1, …, An}.

Repeat until X doesn’t change do:

if B1, …, Bn � C is a FD and
B1, …, Bn are all in X

then add C to X.

X={A1, …, An}.

Repeat until X doesn’t change do:

if B1, …, Bn � C is a FD and
B1, …, Bn are all in X

then add C to X.

{name, category}+ =
{ }

name� color
category� department
color, category� price

name� color
category� department
color, category� price

Example:

name, category, color, department, price

Hence: name, category� color, department, pricename, category� color, department, price

29

Example

Compute {A,B}+ X = {A, B, }

Compute {A, F}+ X = {A, F, }

R(A,B,C,D,E,F) A, B � C
A, D � E
B � D
A, F � B

A, B � C
A, D � E
B � D
A, F � B

In class:

30

Why Do We Need Closure

• With closure we can find all FD’s easily

• To check if X → A
– Compute X+

– Check if A ∈ X+

31

Using Closure to Infer ALL FDs

A, B � C
A, D � B
B � D

A, B � C
A, D � B
B � D

Example:

Step 1: Compute X+, for every X:

A+ = A, B+ = BD, C+ = C, D+ = D
AB+ =ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?)
BCD+ = BCD, ABCD+ = ABCD

A+ = A, B+ = BD, C+ = C, D+ = D
AB+ =ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?)
BCD+ = BCD, ABCD+ = ABCD

Step 2: Enumerate all FD’s X � Y, s.t. Y ⊆ X+ and X∩Y = ∅:

AB � CD, AD�BC, ABC � D, ABD � C, ACD � BAB � CD, AD�BC, ABC � D, ABD � C, ACD � B

32

Another Example

• Enrollment(student, major, course, room, time)
student � major

major, course � room

course � time

What else can we infer ? [in class, or at home]

33

Keys

• A superkey is a set of attributes A1, ..., An s.t. for
any other attribute B, we have A1, ..., An � B

• A key is a minimal superkey
– I.e. set of attributes which is a superkey and for which

no subset is a superkey

34

Computing (Super)Keys

• Compute X+ for all sets X

• If X + = all attributes, then X is a key

• List only the minimal X’s

35

Example

Product(name, price, category, color)

name, category � price
category � color

name, category � price
category � color

What is the key ?

36

Example

Product(name, price, category, color)

name, category � price
category � color

name, category � price
category � color

What is the key ?

(name, category) + = name, category, price, color

Hence (name, category) is a key

37

Examples of Keys

Enrollment(student, address, course, room, time)

student � address
room, time � course
student, course � room, time

student � address
room, time � course
student, course � room, time

(find keys at home)

38

Eliminating Anomalies

Main idea:

• X → A is OK if X is a (super)key

• X → A is not OK otherwise

39

Example

What the key?
{ SSN, PhoneNumber}

Westfield908-555-1234987-65-4321Joe

Westfield908-555-2121987-65-4321Joe

Seattle206-555-6543123-45-6789Fred

Seattle206-555-1234123-45-6789Fred

CityPhoneNumberSSNName

SSN � Name, CitySSN � Name, City

Hence SSN � Name, City
is a “bad” dependency

40

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two
or more keys

41

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two
or more keys

AB�C
BC�A
AB�C
BC�A

A�BC
B�AC
A�BC
B�ACor

what are the keys here ?

Can you design FDs such that there are three keys ?

42

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

If A 1, ..., An � B is a non-trivial dependency

in R , then {A1, ..., An} is a superkey for R

A relation R is in BCNF if:

If A 1, ..., An � B is a non-trivial dependency

in R , then {A1, ..., An} is a superkey for R

Equivalently:
∀ X, either (X+ = X) or (X+ = all attributes)

43

BCNF Decomposition Algorithm

A’s OthersB’s

R1

Is there a
2-attribute
relation that is
not in BCNF ?

repeat
choose A1, …, Am � B1, …, Bn that violates BNCF
split R into R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [others])
continue with both R1 and R2

until no more violations

repeat
choose A1, …, Am � B1, …, Bn that violates BNCF
split R into R1(A1, …, Am, B1, …, Bn) and R2(A1, …, Am, [others])
continue with both R1 and R2

until no more violations

R2

In practice, we have
a better algorithm (coming up)

44

Example

What the key?
{ SSN, PhoneNumber}

Westfield908-555-1234987-65-4321Joe

Westfield908-555-2121987-65-4321Joe

Seattle206-555-6543123-45-6789Fred

Seattle206-555-1234123-45-6789Fred

CityPhoneNumberSSNName

SSN � Name, CitySSN � Name, City

use SSN � Name, City
to split

45

Example

Westfield987-65-4321Joe

Seattle123-45-6789Fred

CitySSNName

908-555-1234987-65-4321

908-555-2121987-65-4321

206-555-6543123-45-6789

206-555-1234123-45-6789

PhoneNumberSSN

SSN � Name, City

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

46

Example Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

SSN � name, age
age � hairColor

Decompose in BCNF (in class):

47

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: X ≠X+ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X+ - X
let Z = [all attributes] - X+

decompose R into R1(X ∪ Y) and R2(X ∪ Z)
continue to decompose recursively R1 and R2

BCNF_Decompose(R)

find X s.t.: X ≠X+ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X+ - X
let Z = [all attributes] - X+

decompose R into R1(X ∪ Y) and R2(X ∪ Z)
continue to decompose recursively R1 and R2

48

Example BCNF Decomposition
Person(name, SSN, age, hairColor, phoneNumber)

SSN � name, age
age � hairColor

Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age)

Hair(age, hairColor)
Phone(SSN, phoneNumber)

Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age)

Hair(age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: X ≠X+ ≠ [all attributes]

What are
the keys ?

49

Example

What are
the keys ?

A � B
B � C

A � B
B � C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

What happens if in R we first pick B+ ? Or AB+ ?

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

50

Decompositions in General

R1 = projection of R on A1, ..., An, B1, ..., Bm

R2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

R1(A1, ..., An, B1, ..., Bm)R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)R2(A1, ..., An, C1, ..., Cp)

51

Theory of Decomposition

• Sometimes it is correct:

Camera19.99Gizmo

Camera24.99OneClick

Gadget19.99Gizmo

CategoryPriceName

19.99Gizmo

24.99OneClick

19.99Gizmo

PriceName

CameraGizmo

CameraOneClick

GadgetGizmo

CategoryName

Lossless decomposition

52

Incorrect Decomposition

• Sometimes it is not:

Camera19.99Gizmo

Camera24.99OneClick

Gadget19.99Gizmo

CategoryPriceName

CameraGizmo

CameraOneClick

GadgetGizmo

CategoryName

Camera19.99

Camera24.99

Gadget19.99

CategoryPrice

What’s
incorrect ??

Lossy decomposition

53

Decompositions in General

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

If A1, ..., An � B1, ..., Bm

Then the decomposition is lossless

R1(A1, ..., An, B1, ..., Bm)R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)R2(A1, ..., An, C1, ..., Cp)

BCNF decomposition is always lossless. WHY ?

Note: don’t need A1, ..., An � C1, ..., Cp

