Lectures 8 and 9: Database Design

Wednesday&Friday, April 10&12

Announcements/Reminders

• Homework 1: solutions are posted

• Homework 2: posted (due Friday, April 20)

• Project Phase 1 due Friday, April 12

Outline

- The relational data model: 3.1
- Functional dependencies: 3.4

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

• A database schema is in First Normal Form if all tables are flat

Student

Student

Name	GPA	Courses
Alice	3.8	Math DB OS
Bob	3.7	DB OS
Carol	3.9	Math OS

\wedge
May need
to add keys

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

Takes

Student	Course
Alice	Math
Carol	Math
Alice	DB
Bob	DB
Alice	OS
Carol	OS

Course

Course	
Math	
DB	
OS	

5

Relational Schema Design

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeat data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies = Joe deletes his phone number: what is his city ?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
/	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone number (how ?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its *functional dependencies*
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
 - hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

$$B_1, B_2, ..., B_m$$

Formally:

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

When Does an FD Hold

Definition: $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if:

 $\forall t, t' \in R, (t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)$

if t, t' agree here then t, t' agree here

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position → Phone

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but not Phone → Position

FD's are constraints:

- On some instances they hold
- On others they don't

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

An Interesting Observation

If all these FDs are true:

name → color
category → department
color, category → price

Then this FD also holds:

name, category → price

Goal: Find ALL Functional Dependencies

 Anomalies occur when certain "bad" FDs hold

• We know some of the FDs

• Need to find *all* FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Is equivalent to

$$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{1}$$

$$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{2}$$

$$....$$

$$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{m}$$

Splitting rule and Combing rule

A1	 Am	B1	 Bm	

Armstrong's Rules (1/3)

$$A_1, A_2, ..., A_n \rightarrow A_i$$

Trivial Rule

where i = 1, 2, ..., n

Why?

Armstrong's Rules (1/3)

Transitive Closure Rule

If

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

and

$$B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$$

then

$$A_1, A_2, ..., A_n \rightarrow C_1, C_2, ..., C_p$$

Why?

A_1	•••	$A_{\rm m}$	\mathbf{B}_1	• • •	\mathbf{B}_{m}	C_1	•••	C_p	

Example (continued)

Start from the following FDs:

- 1. name \rightarrow color
- 2. category \rightarrow department
- 3. color, category \rightarrow price

Infer the following FDs:

Inferred FD	Which Rule did we apply?
4. name, category → name	
5. name, category → color	
6. name, category → category	
7. name, category → color, category	
8. name, category → price	

Example (continued)

Answers:

- 1. name \rightarrow color
- 2. category \rightarrow department
- 3. color, category → price

Inferred FD	Which Rule did we apply?
4. name, category → name	Trivial rule
5. name, category → color	Transitivity on 4, 1
6. name, category → category	Trivial rule
7. name, category → color, category	Split/combine on 5, 6
8. name, category → price	Transitivity on 3, 7

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$

The **closure**, $\{A_1, ..., A_n\}^+$ = the set of attributes B s.t. $A_1, ..., A_n \rightarrow B$

```
Example: name → color category → department color, category → price
```

Closures:

```
name<sup>+</sup> = {name, color}

{name, category}<sup>+</sup> = {name, category, color, department, price}

color<sup>+</sup> = {color}
```

Closure Algorithm

```
X = \{A1, ..., An\}.
```

Repeat until X doesn't change **do**:

```
if B_1, ..., B_n \rightarrow C is a FD and B_1, ..., B_n are all in X then add C to X.
```

Example:

```
name → color
category → department
color, category → price
```

```
{name, category}+ =
{ name, category, color, department, price }
```

Hence: name, category → color, department, price

In class:

$$A, B \rightarrow C$$

$$A, D \rightarrow E$$

$$B \rightarrow D$$

$$A, F \rightarrow B$$

Compute
$$\{A,B\}^{+}$$
 $X = \{A, B,$

Compute
$$\{A, F\}^+ X = \{A, F,$$

Why Do We Need Closure

• With closure we can find all FD's easily

- To check if $X \to A$
 - Compute X⁺
 - Check if $A \in X^+$

Using Closure to Infer ALL FDs

Example:

$$A, B \rightarrow C$$

$$A, D \rightarrow B$$

$$B \rightarrow D$$

Step 1: Compute X⁺, for every X:

```
A+=A, B+=BD, C+=C, D+=D
AB+=ABCD, AC+=AC, AD+=ABCD,
BC+=BCD, BD+=BD, CD+=CD
ABC+=ABD+=ACD^+=ABCD \text{ (no need to compute— why ?)}
BCD^+=BCD, ABCD+=ABCD
```

Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$

Another Example

• Enrollment(student, major, course, room, time)

```
student → major
major, course → room
course → time
```

What else can we infer? [in class, or at home]

Keys

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
 - I.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X⁺ for all sets X
- If X^+ = all attributes, then X is a key
- List only the minimal X's

Product(name, price, category, color)

name, category → price category → color

What is the key?

Product(name, price, category, color)

name, category → price category → color

What is the key?

(name, category) + = name, category, price, color

Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

```
student → address
room, time → course
student, course → room, time
```

(find keys at home)

Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

• $X \rightarrow A$ is not OK otherwise

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

```
What the key?
```

{SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency 39

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

$$\begin{array}{c|c}
AB \rightarrow C \\
BC \rightarrow A
\end{array} \quad \begin{array}{c}
A \rightarrow BC \\
B \rightarrow AC
\end{array}$$

what are the keys here?

Can you design FDs such that there are *three* keys?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1, ..., A_n \rightarrow B$ is a non-trivial dependency

in R, then $\{A_1, ..., A_n\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently:

 \forall X, either (X⁺ = X) or (X⁺ = all attributes)

BCNF Decomposition Algorithm

repeat

choose $A_1, ..., A_m \rightarrow B_1, ..., B_n$ that violates BNCF split R into $R_1(A_1, ..., A_m, B_1, ..., B_n)$ and $R_2(A_1, ..., A_m, [others])$ continue with both R_1 and R_2

until no more violations

Is there a 2-attribute relation that is not in BCNF?

In practice, we have a better algorithm (coming up)

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

```
What the key?

{SSN, PhoneNumber} use SSN → Name, City
to split
```

Example

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN → Name, City

SSN	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age age → hairColor

Decompose in BCNF (in class):

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: $X \neq X^+ \neq [all attributes]$

if (not found) then "R is in BCNF"

<u>let</u> $Y = X^+ - X$ <u>let</u> $Z = [all attributes] - X^+$ decompose R into R1(X \cup Y) and R2(X \cup Z) continue to decompose recursively R1 and R2

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN → name, age
age → hairColor

Iteration 1: Person

SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P

age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

What are the keys?

What happens if in R we first pick B^+ ? Or AB_{49}^+ ?

Decompositions in General

$$R(A_{1},...,A_{n},B_{1},...,B_{m},C_{1},...,C_{p})$$

$$R_{1}(A_{1},...,A_{n},B_{1},...,B_{m})$$

$$R_{2}(A_{1},...,A_{n},C_{1},...,C_{p})$$

$$R_1$$
 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m
 R_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Theory of Decomposition

• Sometimes it is correct:

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Incorrect Decomposition

• Sometimes it is not:

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

What's incorrect??

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Decompositions in General

$$R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p)$$

$$R_1(A_1, ..., A_n, B_1, ..., B_m)$$

$$R_2(A_1, ..., A_n, C_1, ..., C_p)$$

If
$$A_1, ..., A_n \rightarrow B_1, ..., B_m$$

Then the decomposition is lossless

Note: don't need $A_1, ..., A_n \rightarrow C_1, ..., C_p$