Introduction to Database Systems CSE 444

Lecture 22: Query Optimization

November 26-30, 2007

1

Outline

- An example
- Query optimization: algebraic laws 16.2
- Cost-based optimization 16.5, 16.6
- Cost estimation: 16.4

Example

Product(pname, maker), Company(cname, city)

Select Product.pname From Product, Company Where Product.maker=Company.cname and Company.city = "Seattle"

• How do we execute this query ?

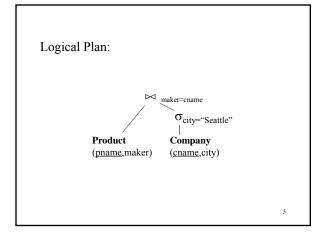
Example

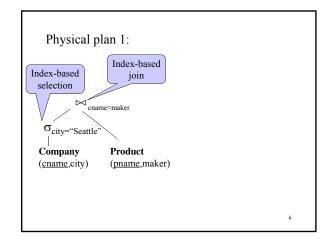
2

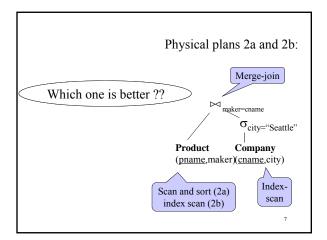
Product(pname, maker), Company(cname, city)

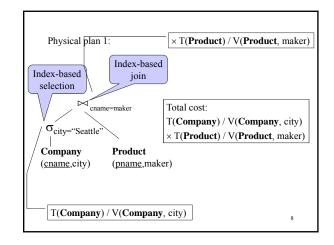
Assume:

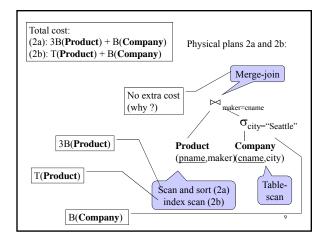
Clustered index: **Product**.<u>pname</u>, **Company**.<u>cname</u> Unclustered index: **Product**.maker, **Company**.city

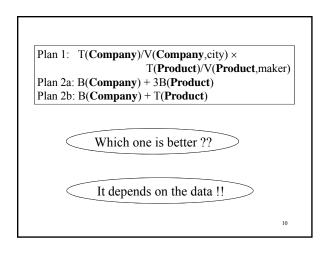


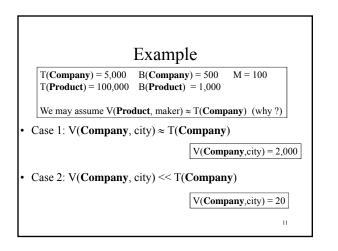


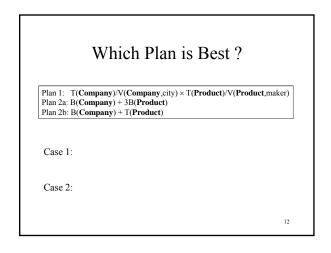


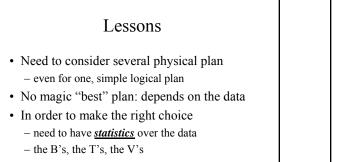




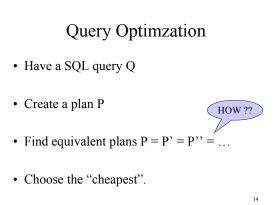


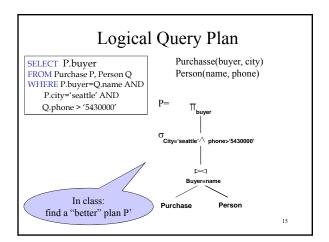


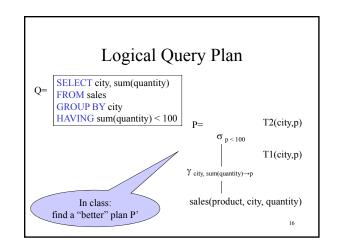




13







The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

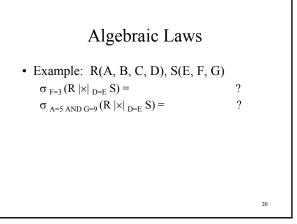
17

Algebraic Laws (incomplete list)

- Commutative and Associative Laws $R \cup S = S \cup R, R \cup (S \cup T) = (R \cup S) \cup T$ $R | \times | S = S | \times | R, R | \times | (S | \times | T) = (R | \times | S) | \times | T$
- Distributive Laws $R \mid \! \times \! \mid (S \cup T) = (R \mid \! \times \! \mid S) \cup (R \mid \! \times \! \mid T)$

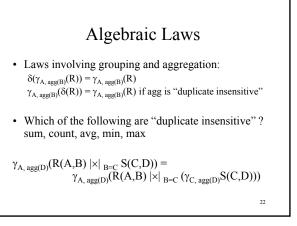
Algebraic Laws (incomplete list)

- Laws involving selection: $\sigma_{C AND C'}(R) = \sigma_{C}(\sigma_{C'}(R))$ $\sigma_{C OR C'}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$
- When C involves only attributes of R $\sigma_{C}(R |x| |S) = \sigma_{C}(R) |x| |S$ $\sigma_{C}(R - S) = \sigma_{C}(R) - S$
 - $\sigma_{C}(R \mid \times \mid S) = \sigma_{C}(R) \mid \times \mid S$



Algebraic Laws

- Laws involving projections $\Pi_M(R |x| |S) = \Pi_M(\Pi_P(R) |x| |\Pi_Q(S))$ $\Pi_M(\Pi_N(R)) = \Pi_{M,N}(R)$
- Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R |x|_{D=E} S) = \Pi_{2}(\Pi_{2}(R) |x|_{D=E} \Pi_{2}(S))$



Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one

 Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans

23

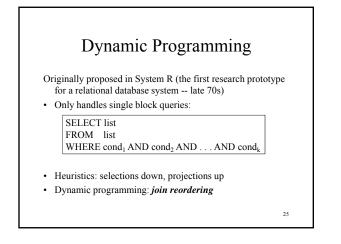
19

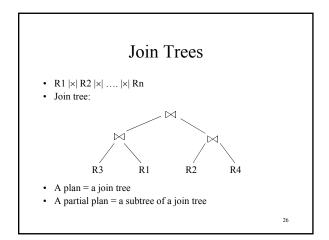
21

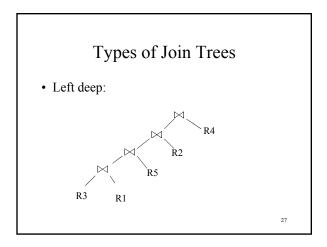
Cost-based Optimizations

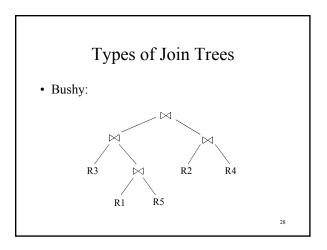
Approaches:

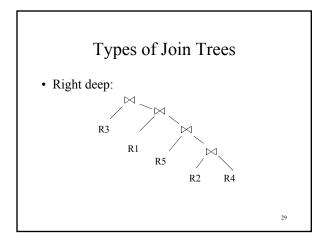
- **Top-down**: the partial plan is a top fragment of the logical plan
- **Bottom up**: the partial plan is a bottom fragment of the logical plan

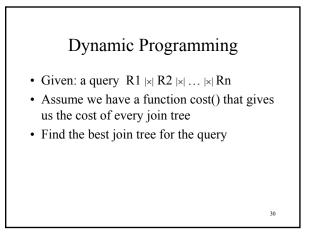


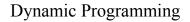










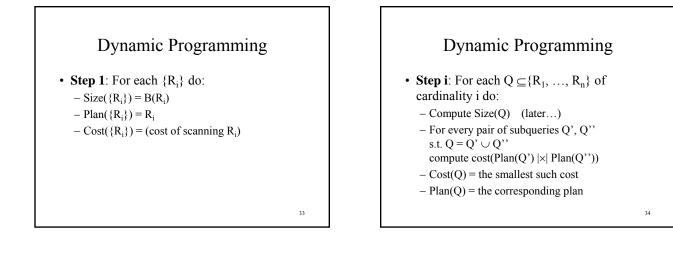


- Idea: for each subset of $\{R1,\,...,\,Rn\},$ compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for $\{R1\}, \{R2\}, ..., \{Rn\}$
 - Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}
 - ...
 - Step n: for $\{R1,\,...,\,Rn\}$
- It is a bottom-up strategy
- A subset of $\{R1,\,...,\,Rn\}$ is also called a subquery

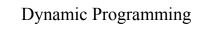
Dynamic Programming

32

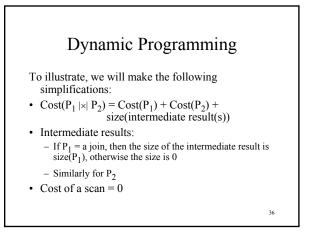
- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)



31



• Return Plan($\{R_1, ..., R_n\}$)





- Example:
- Cost(R5 |x| R7) = 0(no intermediate results)
- Cost((R2 |×| R1) |×| R7) $= \operatorname{Cost}(\operatorname{R2} |\times| \operatorname{R1}) + \operatorname{Cost}(\operatorname{R7}) + \operatorname{size}(\operatorname{R2} |\times| \operatorname{R1})$ = size(R2 $|\times|$ R1)

Dynamic Programming

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: T(A |x| B) = 0.01 * T(A) * T(B)

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan	
RS	100k	0	RS	
RT	60k	0	RT	
RU	20k	0	RU	
ST	150k	0	ST	
SU	50k	0	SU	
TU	30k	0	TU	
RST	3M	60k	(RT)S	
RSU	1M	20k	(RU)S	
RTU	0.6M	20k	(RU)T	
STU	1.5M	30k	(TU)S	
RSTU	30M	60k+50k=110k	(RT)(SU)	

Reducing the Search Space

- · Left-linear trees v.s. Bushy trees
- · Trees without cartesian product

Example: $R(A,B) |\times| S(B,C) |\times| T(C,D)$

 $\begin{array}{l} \mbox{Plan:} (R(A,B) \mid \times \mid T(C,D)) \mid \times \mid S(B,C) \mbox{ has a cartesian product} - \\ most query optimizers will not consider it \end{array}$

41

37

Dynamic Programming: Summary

- · Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time - Non-cartesian products may reduce time further

Rule-Based Optimizers

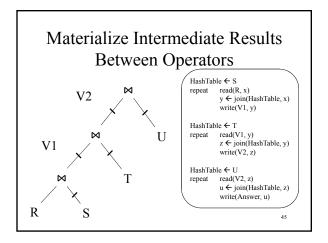
- *Extensible* collection of rules Rule = Algebraic law with a direction
- Algorithm for firing these rules Generate many alternative plans, in some order Prune by cost

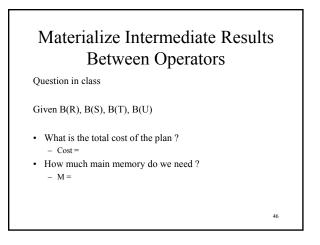
43

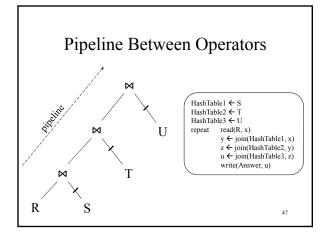
- Volcano (later SQL Sever)
- Starburst (later DB2)

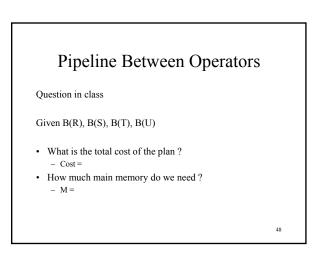
Completing the Physical Query Plan

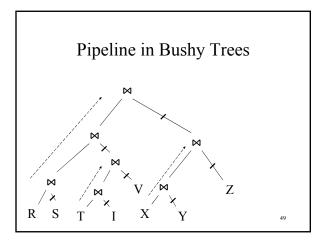
- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have ?
 - Are the input operand(s) sorted ?
- Decide for each intermediate result:
 - To materialize
 - To pipeline

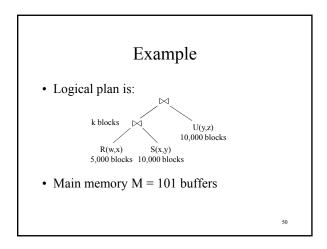


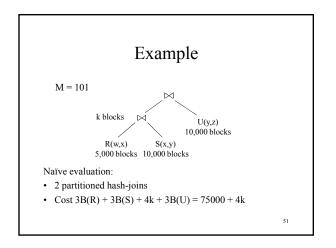


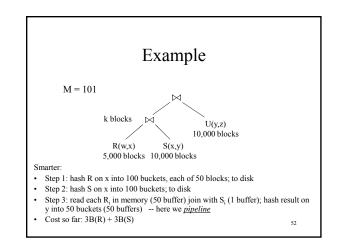


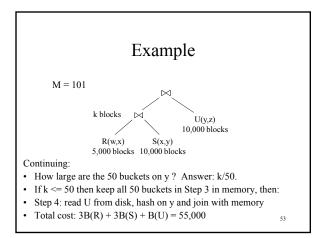


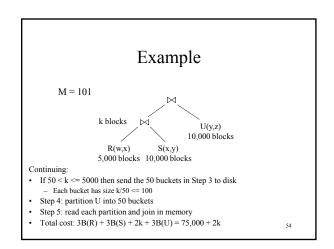


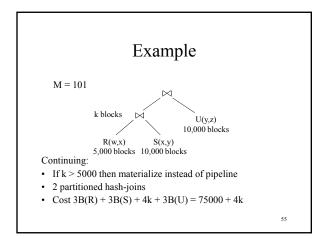


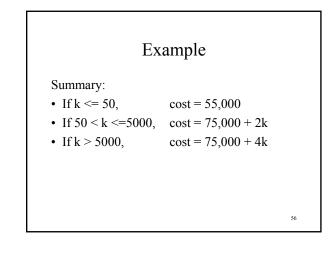


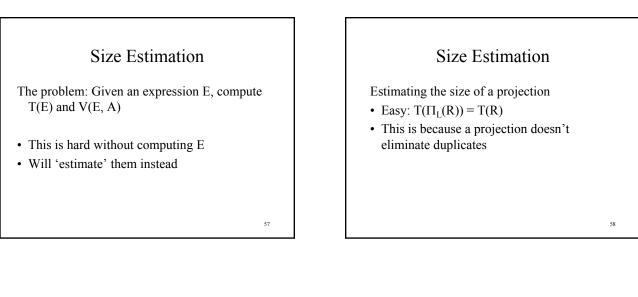








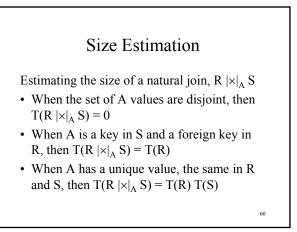




Size Estimation

Estimating the size of a selection

- $S = \sigma_{A=c}(R)$
 - T(S) san be anything from 0 to T(R) V(R,A) + 1
 - Estimate: T(S) = T(R)/V(R,A)
 - When V(R,A) is not available, estimate T(S) = T(R)/10
- $S = \sigma_{A \le c}(R)$
 - T(S) can be anything from 0 to T(R)
 - Estimate: T(S) = (c Low(R, A))/(High(R,A) Low(R,A))T(R)
 - When Low, High unavailable, estimate T(S) = T(R)/3



Size Estimation

Assumptions:

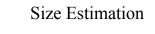
- <u>Containment of values</u>: if V(R,A) <= V(S,A), then the set of A values of R is included in the set of A values of S
 Note: this indeed holds when A is a foreign key in R, and a key in S
- <u>Preservation of values</u>: for any other attribute B, $V(R |x|_A S, B) = V(R, B)$ (or V(S, B))

Size Estimation

Assume V(R,A) <= V(S,A)

- Then each tuple t in R joins some tuple(s) in S
 - How many ?
 - On average T(S)/V(S,A)
 - $\ t \mbox{ will contribute } T(S)/V(S,A) \mbox{ tuples in } R \ |x|_A \ S$
- Hence $T(R |\times|_A S) = T(R) T(S) / V(S,A)$

In general: $T(R |x|_A S) = T(R) T(S) / max(V(R,A),V(S,A))$



Example:

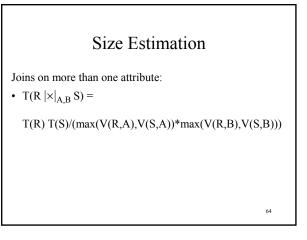
- T(R) = 10000, T(S) = 20000
- V(R,A) = 100, V(S,A) = 200
- How large is R $|x|_A S$?

Answer: $T(R |x|_A S) = 10000 \ 20000/200 = 1M$

63

65

61



Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms Employee(<u>ssn</u>, name, salary, phone) • Maintain a histogram on salary:

Salary:	020k	20k40k	40k60k	60k80k	80k100k	>100k
Tuples	200	800	5000	12000	6500	500

• T(Employee) = 25000, but now we know the distribution

66

Histograms

Ranks(rankName, salary)

- Estimate the size of Employee $|\mathsf{x}|$ $_{Salary}$ Ranks

:	500	
	200	
		_
0k 🔅	> 100k	
1		
)	0k	0k > 100k

	Hist	ograr	ns		
 Eqwidth 	020	2040	4060	6080	80100
1	2	104	9739	152	3
• Eqdepth	044	4448	4850	5056	55100
	2000	2000	2000	2000	2000
		•	•	•	•
					68