Introduction to Database Systems
CSE 444

Lecture 22:
Query Optimization

November 26-30, 2007

Outline

* An example

* Query optimization: algebraic laws 16.2
» Cost-based optimization 16.5, 16.6

+ Cost estimation: 16.4

Example

Product(pname, maker), Company(cname, city)

Select Product.pname

From Product, Company

Where Product.maker=Company.cname
and Company.city = “Seattle”

« How do we execute this query ?

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Logical Plan:
> maker=cname
/ cljcit}P“Seatlle”
Product Company

(pname,maker) (cname,city)

Physical plan 1:

Index-based
join

Index-based
selection

~

city="Seattle”

cname=maker

(o}

Company Product
(cname,city) (pname,maker)

Physical plans 2a and 2b:

Which one is better ??
P m{er:cnams
/ cljcit}ﬁ“Seattle”

Product Company
(pname,maker)cname,city)

Scan and sort (2a)
index scan (2b)

x T(Product) / V(Product, maker) ‘

Physical plan I:

Index-based
join

Index-based

selection
P cname=maker Total cost:
G_/ . \ T(Company) / V(Company, city)
| city="Seattle x T(Product) / V(Product, maker)
Company Product
(cname,city) (pname,maker)

‘ T(Company) / V(Company, city) |

Total cost:
(2a): 3B(Product) + B(Company) Physical plans 2a and 2b:

(2b): T(Product) + B(Company)
No extra cost

(Why ?) P %Fcname

/ cYcity:“Sealttlf:"
|

Product Company
(pname,maker)cname,city)

3B(Product)
T(Product)

Table-

can and sort (2a)
scan

index scan (2b)

B(Company) 9

Plan 1: T(Company)/V(Company,city) x
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)

Plan 2b: B(Company) + T(Product)

Which one is better ??

It depends on the data !!

Example

T(Company) = 5,000 B(Company)=500 M =100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) = T(Company) (why ?)

» Case 1: V(Company, city) ~ T(Company)

[V(Company,city) = 2,000

« Case 2: V(Company, city) << T(Company)

|V(Company,city) =20 |

11

Which Plan is Best ?

Plan 1: T(Company)/V(Company,city) x T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

Lessons

» Need to consider several physical plan

— even for one, simple logical plan
* No magic “best” plan: depends on the data
* In order to make the right choice

— need to have statistics over the data

— the B’s, the T’s, the V’s

Query Optimzation
* Have a SQL query Q
* Create a plan P
* Find equivalent plans P=P>=P*’ = ...

* Choose the “cheapest”.

Logical Query Plan
SELECT P.buyer Purchasse(buyer, city)
FROM Purchase P, Person Q Person(name, phone)

WHERE P.buyer=Q.name AND
P.city="seattle” AND
Q.phone > 5430000 p=

Wbuyer

(e}
Clty:‘seattle’/\ phone>'5430000"

><1
Buyer=name

In class:
find a “better” plan P’

Purchase Person

Logical Query Plan
SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100 p= T2(city,p)
G p<100
T1(city,p)

Y city, sum(quantity)—p

In class: sales(product, city, quantity)

find a “better” plan P’

16

The three components of an
optimizer

We need three things in an optimizer:

* Algebraic laws
* An optimization algorithm
* A cost estimator

Algebraic Laws (incomplete list)

e Commutative and Associative Laws
RuS=SUR, RUSUT)=RUS)UT
RIx[S=S xR, RIx[(S[x| T)=(Rx|S) x| T

* Distributive Laws
Rix[(SUT) = R|xS)URI|x|T)

Algebraic Laws (incomplete list)

» Laws involving selection:
6 canpc(R) =0 (6 (R))
6 corc®) =0 R)Uc (R)

* When C involves only attributes of R
oc(RX|S)=0cc(R) xS
ccR-S)=0c-R)-S
oc(R[X|S) =ocR) XS

Algebraic Laws

» Laws involving projections
Iy(R x| §) = Iy (ITp(R) [x| [I(S))
My (My(R)) = H]\/[,N(R)

» Example R(A,B,C,D), S(E, F, G)
HA,B,G(R | p—g S) =TT, (TTy(R) |x| p_g IT,(S))

Algebraic Laws
* Example: R(A, B, C, D), S(E, F, G)
O3 (R pgS)= ?
G p=s anD 6= (R X[p-g S) = ?
Algebraic Laws

+ Laws involving grouping and aggregation:

S(YA. agg(B}(R)) =Ya, agg(B}(R)
YA, age®OR)) = V4, agem(R) if agg is “duplicate insensitive”

* Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

YA, agg(D)(R(AsB) |X| B=C S(CvD)) =
YA, agg(D)(R(A7B) IX‘ B=C (YC, agg(D)S(CﬁD)))

22

Cost-based Optimizations

* Main idea: apply algebraic laws, until
estimated cost is minimal

* Practically: start from partial plans,
introduce operators one by one
— Will see in a few slides

* Problem: there are too many ways to apply
the laws, hence too many (partial) plans

Cost-based Optimizations

Approaches:

» Top-down: the partial plan is a top
fragment of the logical plan

» Bottom up: the partial plan is a bottom
fragment of the logical plan

Dynamic Programming

Originally proposed in System R (the first research prototype
for a relational database system -- late 70s)

* Only handles single block queries:
SELECT list

FROM list
WHERE cond; AND cond, AND . . . AND cond,

» Heuristics: selections down, projections up
* Dynamic programming: join reordering

Join Trees

e Rl |x|R2|X]|....|x| Rn
¢ Join tree:

N/ N\N
R3/ \Rl R2/ \

R4

* A plan=ajoin tree
« A partial plan = a subtree of a join tree

Types of Join Trees

* Left deep:

Types of Join Trees

* Bushy:

D*i'\‘ [
VRV
R3 > R2 R4

/N

R1 RS

Types of Join Trees

* Right deep:
D

s
R3 / \N
R1 / \|><
RS /N

R2 R4

Dynamic Programming

* Given: aquery RI1 [xR2 |x... |x|Rn
+ Assume we have a function cost() that gives
us the cost of every join tree

* Find the best join tree for the query

Dynamic Programming

« Idea: for each subset of {R1, ..., Rn}, compute the
best plan for that subset

* In increasing order of set cardinality:
— Step I: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {RI,R3}, ..., {Rn-1, Rn}

— Step n: for {R1, ..., Rn}
 Itis a bottom-up strategy
« Asubset of {R1, ..., Rn} is also called a subquery

31

Dynamic Programming

* For each subquery Q —{R1, ..., Rn}
compute the following:
- Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

Dynamic Programming

+ Step 1: For each {R;} do:
- Size({Ry}) = BR))
~ Plan({R;}) = R,
— Cost({R;}) = (cost of scanning R;)

Dynamic Programming

* Stepi: Foreach Q <{R,, ..., R} of
cardinality i do:
— Compute Size(Q) (later...)
— For every pair of subqueries Q’, Q”’
5.Q=Q uUQ”
compute cost(Plan(Q”) |x| Plan(Q’*))
— Cost(Q) = the smallest such cost

— Plan(Q) = the corresponding plan

Dynamic Programming

» Return Plan({R, ..., R,})

Dynamic Programming

To illustrate, we will make the following
simplifications:
*+ Cost(P; x| P,) = Cost(P;) + Cost(P,) +
size(intermediate result(s))
* Intermediate results:

— If Py = a join, then the size of the intermediate result is
size(P), otherwise the size is 0

— Similarly for P,
* Costofascan=0

Dynamic Programming

* Example:
e Cost(RS5 [x|R7) =0 (no intermediate results)
« Cost((R2 |x| R1) |x R7)
= Cost(R2 |x| R1) + Cost(R7) + size(R2 |x| R1)
=size(R2 |x| R1)

Dynamic Programming

* Relations: R, S, T, U
» Number of tuples: 2000, 5000, 3000, 1000
¢ Size estimation: T(A |x| B) = 0.01*T(A)*T(B)

Subquery Size Cost Plan

RS

RT

RU

ST

SuU

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
su 50k 0 su
TU 30k 0 TU

RST 3M 60k (RT)S
RSU M 20k (RU)S
RTU 0.6M 20k (RU)T
STU 15M 30k (TU)S
RSTU 30M 60k+50k=110k (RT)(SU) m

Reducing the Search Space
« Left-linear trees v.s. Bushy trees
« Trees without cartesian product
Example: R(A,B) |x| S(B,C) x| T(C,D)

Plan: (R(A,B) x| T(C,D)) |x| S(B,C) has a cartesian product —
most query optimizers will not consider it

Dynamic Programming;:
Summary

» Handles only join queries:
— Selections are pushed down (i.e. early)
— Projections are pulled up (i.e. late)

+ Takes exponential time in general, BUT:
— Left linear joins may reduce time
— Non-cartesian products may reduce time further

Rule-Based Optimizers

« Extensible collection of rules
Rule = Algebraic law with a direction
* Algorithm for firing these rules
Generate many alternative plans, in some order

Prune by cost

* Volcano (later SQL Sever)

« Starburst (later DB2)

Completing the
Physical Query Plan

+ Choose algorithm to implement each
operator
— Need to account for more than cost:
* How much memory do we have ?
* Are the input operand(s) sorted ?
* Decide for each intermediate result:
— To materialize
— To pipeline

Materialize Intermediate Results
Between Operators

/\
“/\

/X

HashTable € S

repeat read(R, x)
y € join(HashTable, x)
write(V1, y)

HashTable € T

repeat read(V1,y)
z € join(HashTable, y)
write(V2, z)

HashTable < U

repeat read(V2, z)
u € join(HashTable, z)
write(Answer, u)

Materialize Intermediate Results
Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

« What is the total cost of the plan ?
— Cost=

* How much main memory do we need ?
~ M=

Pipeline Between Operators

HashTablel €< S

HashTable2 &< T

HashTable3 € U

repeat read(R, x)
y € join(HashTablel, x)
z € join(HashTable2, y)
u € join(HashTable3, z)
write(Answer, u)

Pipeline Between Operators
Question in class
Given B(R), B(S), B(T), B(U)
« What is the total cost of the plan ?
" Cost-

¢ How much main memory do we need ?
— M=

Pipeline in Bushy Trees

Example

* Logical plan is:
>

U(y.2)
\ 10,000 blocks
R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <

* Main memory M = 101 buffers

Example

M=101
> \
U(y.2)
\ 10,000 blocks
R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <]

Naive evaluation:
2 partitioned hash-joins
e Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example

M=101
> \
U(y.z)
\ 10,000 blocks
R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <]

Smarter:
« Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
« Step 2: hash S on x into 100 buckets; to disk

« Step 3: read each R; in memory (50 buffer) join with S; (1 buffer); hash result on
y into 50 buckets (50 buffers) -- here we pipeline

« Costso far: 3B(R) + 3B(S)

Example

M=101
adl \
U(y.2)
\ 10,000 blocks
R(w,x) S(x,y)
5,000 blocks 10,000 blocks

k blocks <

Continuing:

« How large are the 50 buckets on'y ? Answer: k/50.

¢ Ifk <= 50 then keep all 50 buckets in Step 3 in memory, then:

« Step 4: read U from disk, hash on y and join with memory

¢ Total cost: 3B(R) + 3B(S) + B(U) = 55,000 5

Example

M=101
> \
U(y.2)
\ 10,000 blocks
R(w,x) S(x,y)
5,000 blocks 10,000 blocks

kblocks

Continuing:
« If 50 <k <=5000 then send the 50 buckets in Step 3 to disk
Each bucket has size k/50 <= 100
« Step 4: partition U into 50 buckets
« Step 5: read each partition and join in memory
« Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k 54

Example

M=101
D \
k blocks
- UGy2)
\ 10,000 blocks
R(w,x) S(x,y)
5,000 blocks 10,000 blocks
Continuing:

« Ifk > 5000 then materialize instead of pipeline
2 partitioned hash-joins
» Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example
Summary:
» Ifk <= 50, cost = 55,000
» If50 <k <=5000, cost="75,000+ 2k
« Ifk > 5000, cost = 75,000 + 4k

Size Estimation

The problem: Given an expression E, compute
T(E) and V(E, A)

* This is hard without computing E
» Will ‘estimate’ them instead

Size Estimation

Estimating the size of a projection

» Easy: TII (R)) = T(R)

* This is because a projection doesn’t
eliminate duplicates

Size Estimation

Estimating the size of a selection
* S=0,.(R)
— T(S) san be anything from 0 to T(R) — V(R,A) + 1
— Estimate: T(S) = T(R)/V(R,A)
— When V(R,A) is not available, estimate T(S) = T(R)/10

* S=0,R)
— T(S) can be anything from 0 to T(R)
— Estimate: T(S) = (¢ - Low(R, A))/(High(R,A) - Low(R,A))T(R)
— When Low, High unavailable, estimate T(S) = T(R)/3

Size Estimation

Estimating the size of a natural join, R |x|, S

* When the set of A values are disjoint, then
T(R x|, $)=0

* When A is a key in S and a foreign key in
R, then TR [x|, S) = T(R)

* When A has a unique value, the same in R
and S, then T(R |x|, S) = T(R) T(S)

10

Size Estimation

Assumptions:
« Containment of values: if V(R,A) <= V(S,A), then the set
of A values of R is included in the set of A values of S

— Note: this indeed holds when A is a foreign key in R, and a key in
S

« Preservation of values: for any other attribute B,
V(R [x] 4 S,B)=V(R,B) (or V(S, B))

Size Estimation

Assume V(R,A) <= V(S,A)

* Then each tuple t in R joins some tuple(s) in S
— How many ?
— On average T(S)/V(S,A)
— twill contribute T(S)/V(S,A) tuples in R |x|, S

* Hence T(R |x|, S) =T(R) T(S) / V(S,A)

In general: T(R [x|, S) = T(R) T(S) / max(V(R,A),V(S,A))

62

Size Estimation

Example:

* T(R) = 10000, T(S)=20000
* V(R,A) =100, V(S,A)=200
* How largeisR |x| , S ?

Answer: T(R |x|, S) = 10000 20000/200 = 1M

Size Estimation

Joins on more than one attribute:
* TR[X|,pS)=

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

Histograms

« Statistics on data maintained by the
RDBMS

» Makes size estimation much more accurate
(hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)
« Maintain a histogram on salary:

Salary: 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k |> 100k

Tuples 200 800 5000 12000 6500 500

* T(Employee) = 25000, but now we know the distribution

11

Histograms

Ranks(rankName, salary)

* Estimate the size of Employee [x| ., Ranks

Employee | 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k |> 100k

200 800 5000 12000 6500 500

Ranks 0..20k 20k..40k | 40k..60k | 60k..80k | 80k..100k |> 100k

8 20 40 80 100 2

67

* Eqwidth

* Eqdepth

Histograms
0..20 20..40 | 40..60 | 60..80 | 80..100
2 104 9739 152 3
0..44 44.48 | 48.50 | 50..56 | 55..100
2000 2000 2000 2000 2000

12

