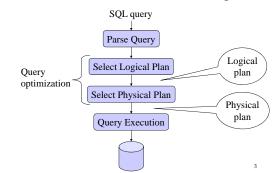
Introduction to Database Systems CSE 444

Lecture 21: Query Execution


November 19-21, 2007

Outline

- Hash-tables (13.4)
- Query execution: 15.1 15.5

2

Architecture of a Database Engine

Logical Algebra Operators

- Union, intersection, difference
- Selection σ
- Projection Π
- Join ⋈
- Duplicate elimination δ
- Grouping γ
- Sorting τ

4

Physical Operators

Will learn today and the following lectures:

- Join:
 - Main-memory hash based join
 - Block-based nested-loop join
 - Partitioned hash-based join
 - Merge-join
 - Index-join
- Group-by / Duplicate-elimination:

- ...

5

Question in Class

Logical operator:

Product(pname, cname) ⋈ Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:

- 1.
- 2.
- 3.

Question in Class

Product(pname, cname) ⋈ Company(cname, city)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is $\overline{\text{in main memory}}$?

Nested loop join

time =

• Sort and merge = merge-join

time =

Hash join

me =

Cost Parameters

The *cost* of an operation = total number of I/Os

- result assumed to be delivered in main memory

Cost parameters:

- B(R) = number of blocks for relation R
- T(R) = number of tuples in relation R
- V(R, a) = number of distinct values of attribute a
- M = size of main memory buffer pool, in blocks

8

Cost Parameters

- Clustered table R:
 - Blocks consists only of records from this table
 - $-B(R) \ll T(R)$
- Unclustered table R:
 - Its records are placed on blocks with other tables
 - $-B(R) \approx T(R)$
- When a is a key, V(R,a) = T(R)
- When a is not a key, V(R,a)

9

Selection and Projection

Selection $\sigma(R)$, projection $\Pi(R)$

- Both are *tuple-at-a-time* algorithms
- Cost: B(R)

Input buffer Unary operator Output buffer

10

Hash Tables

- Key data structure used in many operators
- May also be used for indexes, as alternative to B+trees
- Recall basics:
 - There are n buckets
 - A hash function f(k) maps a key k to $\{0, 1, ..., n-1\}$
 - Store in bucket f(k) a pointer to record with key k
- Secondary storage: bucket = block, use overflow blocks when needed

11

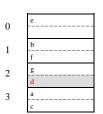
Hash Table Example

- Assume 1 bucket (block) stores 2 keys + pointers
- h(e)-0
- h(b)=h(f)=1
- h(g)=2
- h(a)=h(c)=3
- 0 | b | f | g | g |

3

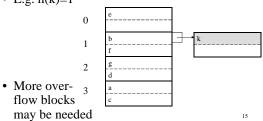
Here: $h(x) = x \mod 4$

Searching in a Hash Table


- Search for a:
- Compute h(a)=3
- Read bucket 3
- 1 disk access

13

Insertion in Hash Table


- Place in right bucket, if space
- E.g. h(d)=2

14

Insertion in Hash Table

- Create overflow block, if no space
- E.g. h(k)=1

Hash Table Performance

Excellent, if no overflow blocks
Degrades considerably when number of keys exceeds the number of buckets (I.e.

many overflow blocks).

16

Main Memory Hash Join

Hash join: R⋈S

- Scan S, build buckets in main memory
- Then scan R and join
- Cost: B(R) + B(S)
- Assumption: $B(S) \le M$

Duplicate Elimination

Duplicate elimination $\delta(R)$

- Hash table in main memory
- Cost: B(R)
- Assumption: $B(\delta(R)) \le M$

Grouping

Grouping:

Product(name, department, quantity)

 $\gamma_{department, sum(quantity)} (Product) \rightarrow Answer(department, sum)$

Main memory hash table

Question: How?

19

Nested Loop Joins

• Tuple-based nested loop $R \bowtie S$

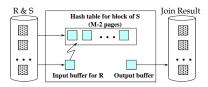
```
for each tuple r in R do
for each tuple s in S do
if r and s join then output (r,s)
```

- Cost: T(R) B(S) when S is clustered
- Cost: T(R) T(S) when S is unclustered

20

Nested Loop Joins

- · We can be much more clever
- <u>Question</u>: how would you compute the join in the following cases? What is the cost?
 - B(R) = 1000, B(S) = 2, M = 4
 - -B(R) = 1000, B(S) = 3, M = 4
 - B(R) = 1000, B(S) = 6, M = 4


21

Block-Based Nested-loop Join

```
for each (M-2) blocks bs of S do
  for each block br of R do
  for each tuple s in bs
  for each tuple r in br do
  if "r and s join" then output(r,s)
```

22

Block-Based Nested-loop Join

23

Block-Based Nested-loop Join

- Cost:
 - Read S once: cost B(S)
 - Outer loop runs B(S)/(M-2) times, and each time need to read R: costs B(S)B(R)/(M-2)
 - $\ Total \ cost: \ B(S) \ + \ B(S)B(R)/(M-2)$
- Notice: it is better to iterate over the smaller relation first
- R ⋈ S: R=outer relation, S=inner relation

Index Based Join

- R ⋈ S
- Assume S has an index on the join attribute

for each tuple r in R do

lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: B(R) + T(R)B(S)/V(S,a)
- If index is unclustered: B(R) + T(R)T(S)/V(S,a)

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on a: $\cos B(R)/V(R,a)$
- Unclustered index on a: cost T(R)/V(R,a)
 - We have seen that this is like a join

Index Based Selection

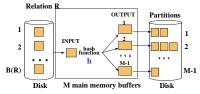
B(R) = 2000

T(R) = 100,000V(R, a) = 20

 $\cos t \text{ of } \sigma_{a=v}(R) = ?$

- Table scan (assuming R is clustered):
 - B(R) = 2,000 I/Os

• Example:


- Index based selection:
 - If index is clustered: B(R)/V(R,a) = 100 I/Os
- If index is unclustered: T(R)/V(R,a) = 5,000 I/Os
- · Lesson: don't build unclustered indexes when V(R,a) is small!

Operations on Very Large Tables

- · Partitioned hash algorithms
- Merge-sort algorithms

Partitioned Hash Algorithms

- · Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

· Does each bucket fit in main memory ?

-Yes if $B(R)/M \le M$, i.e. $B(R) \le M^2$

Duplicate Elimination

- Recall: $\delta(R)$ = duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R) \le M^2$

31

Grouping

- Recall: $\gamma(R)$ = grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption:B(R) \leq M²

32

Partitioned Hash Join

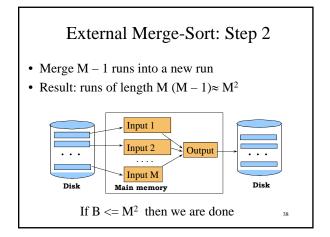
$R \bowtie S$

- Step 1:
 - Hash S into M buckets
 - send all buckets to disk
- Step 2
 - Hash R into M buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

33

Original Relation Hash-Join OUTPUT Partitions Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i. **M**-1 Disk Partition Join Result of R & S Hash table for partition Si (< M-1 pages) Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches. B main memory buffers Disk

Partitioned Hash Join


- Cost: 3B(R) + 3B(S)
- Assumption: $min(B(R), B(S)) \le M^2$

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
 - ORDER BY in SQL queries
 - Several physical operators
 - Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when $B < M^2$

36

External Merge-Sort: Step 1 • Phase one: load M bytes in memory, sort M Disk Runs of length M bytes

Cost of External Merge Sort

- Read+write+read = 3B(R)
- Assumption: $B(R) \le M^2$

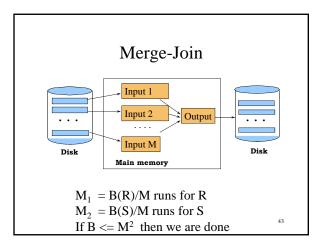
39

Duplicate Elimination

Duplicate elimination $\delta(R)$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how ?
- Cost = 3B(R)
- Assumption: $B(\delta(R)) \le M^2$

Grouping


Grouping: $\gamma_{a, sum(b)}(R)$

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $B(R) \le M^2$

Merge-Join

Join R ⋈ S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Two-Pass Algorithms Based on Sorting

 $Join \, R \bowtie S$

• If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase

• Total cost: 3B(R)+3B(S)

• Assumption: $B(R) + B(S) \le M^2$

44

Summary of External Join Algorithms

• Block Nested Loop: B(S) + B(R)*B(S)/M

• Index Join: B(R) + T(R)B(S)/V(S,a)

Partitioned Hash: 3B(R)+3B(S);
 min(B(R),B(S)) <= M²

Merge Join: 3B(R)+3B(S
 B(R)+B(S) <= M²