Introduction to Database Systems CSE 444

Lectures 19: Data Storage and Indexes

November 14, 2007

Outline

- Representing data elements (12)
- Index structures (13.1, 13.2)
- B-trees (13.3)

2

Files and Tables

- A disk = a sequence of blocks
- A file = a subsequence of blocks, usually contiguous
- Need to store tables/records/indexes in files/block

3

Representing Data Elements

• Relational database elements:

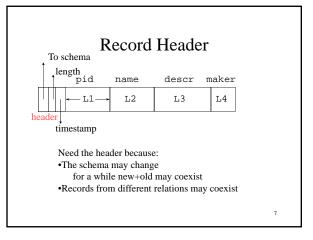
```
CREATE TABLE Product (

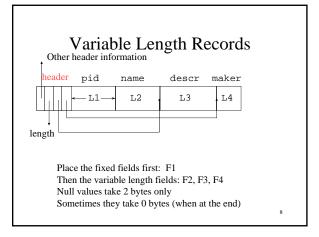
pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)
```

- · A tuple is represented as a record
- The table is a sequence of records

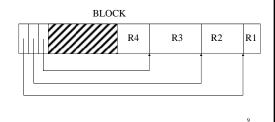
4

Issues


- Represent attributes inside the records
- Represent the records inside the blocks


5

Record Formats: Fixed Length


- Information about field types same for all records in a file; stored in *system catalogs*.
- Finding *i'th* field requires scan of record.
- Note the importance of schema information!

Storing Records in Blocks

• Blocks have fixed size (typically 4k - 8k)

BLOB

- Binary large objects
- Supported by modern database systems
- E.g. images, sounds, etc.
- Storage: attempt to cluster blocks together

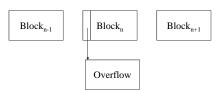
CLOB = character large object

• Supports only restricted operations

10

File Types

11


- Unsorted (heap)
- Sorted (e.g. by pid)

Modifications: Insertion

- File is unsorted: add it to the end (easy ③)
- File is sorted:
 - Is there space in the right block?
 - Yes: we are lucky, store it there
 - Is there space in a neighboring block?
 - Look 1-2 blocks to the left/right, shift records
 - If anything else fails, create overflow block

12

Overflow Blocks

• After a while the file starts being dominated by overflow blocks: time to reorganize

13

Modifications: Deletions

- Free space in block, shift records
- May be able to eliminate an overflow block
- Can never really eliminate the record, because others may *point* to it
 - Place a tombstone instead (a NULL record)

How can we *point* to a record in an RDBMS?

Modifications: Updates

- If new record is shorter than previous, easy ©
- If it is longer, need to shift records, create overflow blocks

15

Pointers

Logical pointer to a record consists of:

- · Logical block number
- · An offset in the block's header

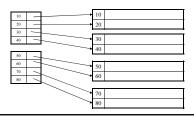
We use pointers in Indexes and in Log entries

Note: review what a pointer in C is

16

Indexes

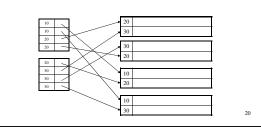
- An <u>index</u> on a file speeds up selections on the search key fields for the index.
 - Any subset of the fields of a relation can be the search key for an index on the relation.
 - Search key is not the same as key (minimal set of fields that uniquely identify a record in a relation).
- An index contains a collection of data entries, and supports efficient retrieval of all data entries with a given key value k.

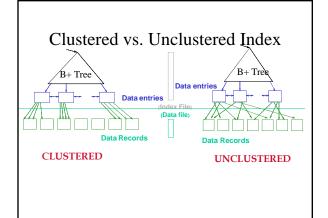

Index Classification

- Clustered/unclustered
 - Clustered = records close in the index are close in the data; same as saying that the table is ordered by the index key
 - Unclustered = records close in the index may be far in the data
- · Primary/secondary:
 - Interpretation 1:
 - Primary = is over attributes part of the primary
 - Secondary = cannot reorder data
 - Interpretation 2: means the same as clustered/unclustured
- B+ tree or Hash table

18

Clustered Index


- File is sorted on the index attribute
- Only one per table



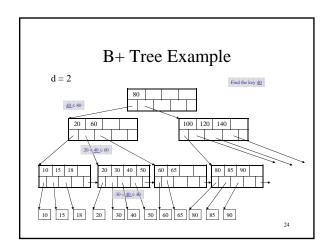
19

Unclustered Index

• Several per table

B+ Trees

- Search trees
- Idea in B Trees:
 - make 1 node = 1 block
- Idea in B+ Trees:
 - Make leaves into a linked list (range queries are easier)


22

Parameter d = the <u>degree</u> Each node has >= d and <= 2d keys (except root) ³⁰ ¹²⁰ ²⁴⁰ ⁸⁶⁹⁸ ⁸⁶⁹⁸

23

40 50 60 Next leaf

B+ Trees Basics

B+ Tree Design

- How large d?
- Example:
 - Key size = 4 bytes
 - Pointer size = 8 bytes
 - Block size = 4096 byes
- $2d \times 4 + (2d+1) \times 8 <= 4096$
- d = 170

25

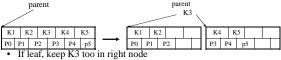
Searching a B+ Tree

- Exact key values:
 - Start at the root
 - Proceed down, to the leaf

Select name From people Where age = 25

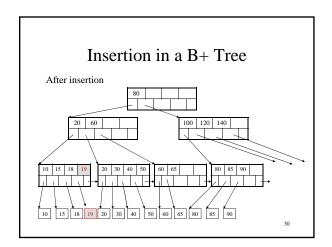
- Range queries:
 - As above
 - Then sequential traversal

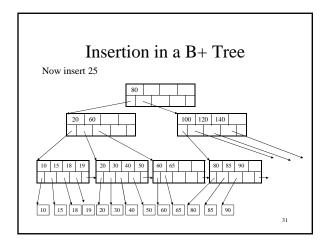
Select name From people Where 20 <= age and age <= 30

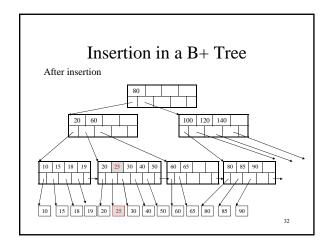

B+ Trees in Practice

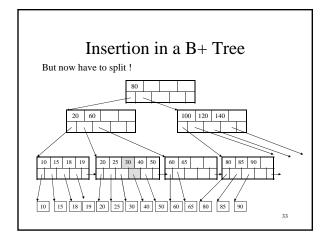
- Typical order: 100. Typical fill-factor: 67%.
 - average fanout = 133
- · Typical capacities:
 - Height 4: $133^4 = 312,900,700$ records
 - Height 3: $133^3 = 2,352,637$ records
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

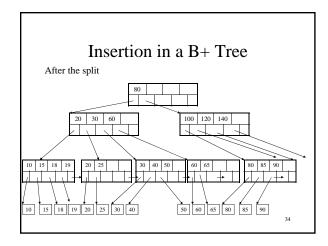
Insertion in a B+ Tree

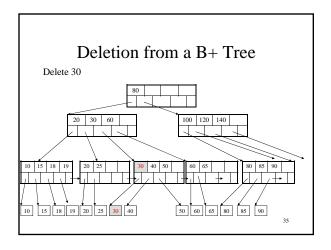

Insert (K. P)

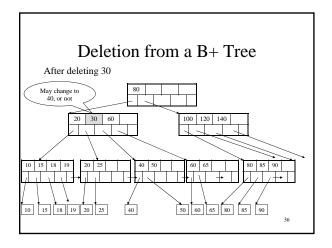

- Find leaf where K belongs, insert
- · If no overflow (2d keys or less), halt
- If overflow (2d+1 keys), split node, insert in parent:

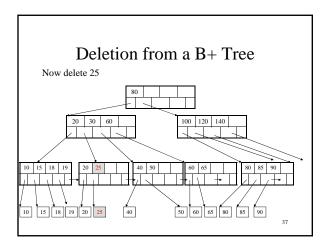


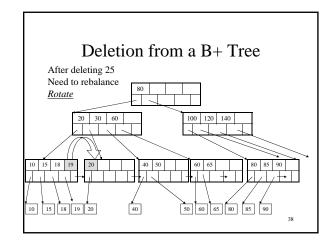

- · When root splits, new root has 1 key only

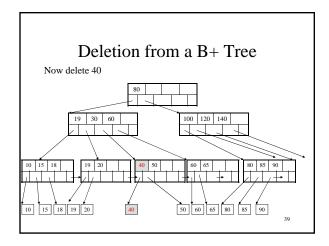

Insertion in a B+ Tree Insert K=19

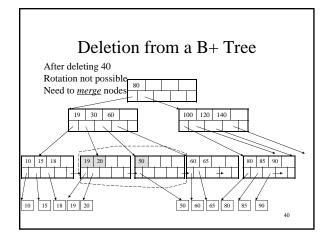


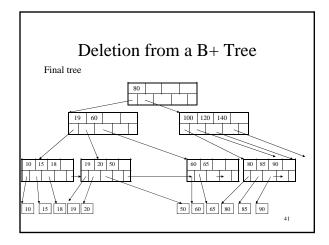












Summary on B+ Trees

- Default index structure on most DBMS
- Very effective at answering 'point' queries: productName 'gizmo'
- Effective for range queries: 50 < price AND price < 100
- Less effective for multirange: 50 < price < 100 AND 2 < quant < 20

42