
11/13/2007

1

Introduction to Database Systems
CSE 444

Lectures 19:
Data Storage and Indexes

1

Data Storage and Indexes

November 14, 2007

Outline

• Representing data elements (12)
• Index structures (13.1, 13.2)
• B trees (13 3)

2

• B-trees (13.3)

Files and Tables

• A disk = a sequence of blocks

• A file = a subsequence of blocks usually

3

• A file = a subsequence of blocks, usually
contiguous

• Need to store tables/records/indexes in
files/block

Representing Data Elements
• Relational database elements:

CREATE TABLE Product (

pid INT PRIMARY KEY

4

• A tuple is represented as a record
• The table is a sequence of records

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)

)

Issues

• Represent attributes inside the records
• Represent the records inside the blocks

5

Record Formats: Fixed Length

L1 L2 L3 L4

pid name descr maker

6

• Information about field types same for all
records in a file; stored in system catalogs.

• Finding i’th field requires scan of record.
• Note the importance of schema information!

Base address (B) Address = B+L1+L2

11/13/2007

2

Record Header

L1 L2 L3 L4

To schema
length

header

pid name descr maker

7

timestamp

Need the header because:
•The schema may change

for a while new+old may coexist
•Records from different relations may coexist

header

Variable Length Records

L1 L2 L3 L4

Other header information

header pid name descr maker

8

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

Storing Records in Blocks

• Blocks have fixed size (typically 4k – 8k)

BLOCK

9

R1R2R3R4

BLOB

• Binary large objects
• Supported by modern database systems
• E g images sounds etc

10

• E.g. images, sounds, etc.
• Storage: attempt to cluster blocks together

CLOB = character large object
• Supports only restricted operations

File Types

• Unsorted (heap)

• Sorted (e g by pid)

11

• Sorted (e.g. by pid)

Modifications: Insertion

• File is unsorted: add it to the end (easy ☺)
• File is sorted:

Is there space in the right block ?

12

– Is there space in the right block ?
• Yes: we are lucky, store it there

– Is there space in a neighboring block ?
• Look 1-2 blocks to the left/right, shift records

– If anything else fails, create overflow block

11/13/2007

3

Overflow Blocks

Blockn-1 Blockn Blockn+1

13

• After a while the file starts being dominated
by overflow blocks: time to reorganize

Overflow

Modifications: Deletions

• Free space in block, shift records

• May be able to eliminate an overflow block

14

• May be able to eliminate an overflow block

• Can never really eliminate the record,
because others may point to it
– Place a tombstone instead (a NULL record)

How can we point to a record in an RDBMS ?

Modifications: Updates

• If new record is shorter than previous, easy ☺
• If it is longer, need to shift records, create

overflow blocks

15

overflow blocks

Pointers

Logical pointer to a record consists of:

• Logical block number

16

• An offset in the block’s header

We use pointers in Indexes and in Log entries

Note: review what a pointer in C is

Indexes
• An index on a file speeds up selections on the

search key fields for the index.
– Any subset of the fields of a relation can be the search

key for an index on the relation.
– Search key is not the same as key (minimal set of fields

that uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value k.

Index Classification

• Clustered/unclustered
– Clustered = records close in the index are close in the data; same as

saying that the table is ordered by the index key
– Unclustered = records close in the index may be far in the data

18

• Primary/secondary:
– Interpretation 1:

• Primary = is over attributes part of the primary
• Secondary = cannot reorder data

– Interpretation 2: means the same as clustered/unclustured

• B+ tree or Hash table

11/13/2007

4

Clustered Index

• File is sorted on the index attribute
• Only one per table

19

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Unclustered Index

• Several per table

20

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

Clustered vs. Unclustered Index

Data entries
(Index File)

Data entries
B+ Tree B+ Tree

(Data file)

Data Records Data Records

CLUSTERED UNCLUSTERED

B+ Trees

• Search trees
• Idea in B Trees:

make 1 node = 1 block

22

– make 1 node = 1 block
• Idea in B+ Trees:

– Make leaves into a linked list (range queries are
easier)

• Parameter d = the degree
• Each node has >= d and <= 2d keys (except root)

B+ Trees Basics

30 120 240

23

• Each leaf has >=d and <= 2d keys:
Keys k < 30

Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

B+ Tree Example

80

20 60 100 120 140

d = 2 Find the key 40

40 ≤ 80

24

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

20 < 40 ≤ 60

30 < 40 ≤ 40

11/13/2007

5

B+ Tree Design

• How large d ?
• Example:

Key size = 4 bytes

25

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

Searching a B+ Tree

• Exact key values:
– Start at the root
– Proceed down, to the leaf

Select name
From people
Where age = 25

26

Proceed down, to the leaf

• Range queries:
– As above
– Then sequential traversal

Select name
From people
Where 20 <= age
and age <= 30

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
Height 4: 1334 = 312 900 700 records– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records
• Can often hold top levels in buffer pool:

– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys) split node insert in parent:

28

• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node
• When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
K3

parent

Insertion in a B+ Tree

80

20 60 100 120 140

Insert K=19

29

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insertion in a B+ Tree

80

20 60 100 120 140

After insertion

30

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

11/13/2007

6

Insertion in a B+ Tree

80

20 60 100 120 140

Now insert 25

31

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Insertion in a B+ Tree

80

20 60 100 120 140

After insertion

32

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019 50

Insertion in a B+ Tree

80

20 60 100 120 140

But now have to split !

33

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019 50

Insertion in a B+ Tree

80

20 30 60 100 120 140

After the split

34

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019 50

30 40 50

Deletion from a B+ Tree

80

20 30 60 100 120 140

Delete 30

35

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019 50

30 40 50

Deletion from a B+ Tree

80

20 30 60 100 120 140

After deleting 30

May change to
40, or not

36

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019 50

40 50

11/13/2007

7

Deletion from a B+ Tree

80

20 30 60 100 120 140

Now delete 25

37

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019 50

40 50

Deletion from a B+ Tree

80

20 30 60 100 120 140

After deleting 25
Need to rebalance
Rotate

38

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019 50

40 50

Deletion from a B+ Tree

80

19 30 60 100 120 140

Now delete 40

39

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019 50

40 50

Deletion from a B+ Tree

80

19 30 60 100 120 140

After deleting 40
Rotation not possible
Need to merge nodes

40

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019 50

50

Deletion from a B+ Tree

80

19 60 100 120 140

Final tree

41

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019 50

Summary on B+ Trees

• Default index structure on most DBMS
• Very effective at answering ‘point’ queries:

productName = ‘gizmo’

42

productName gizmo
• Effective for range queries:

50 < price AND price < 100
• Less effective for multirange:

50 < price < 100 AND 2 < quant < 20

