Introduction to Database Systems
CSE 444

Lectures 19:
Data Storage and Indexes

November 14, 2007

11/13/2007

Outline

 Representing data elements (12)
« Index structures (13.1, 13.2)
* B-trees (13.3)

Files and Tables

A disk = a sequence of blocks

« A file = a subsequence of blocks, usually
contiguous

* Need to store tables/records/indexes in
files/block

Representing Data Elements

« Relational database elements:

CREATE TABLE Product (

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),

maker CHAR(10) REFERENCES Company(name)

)

¢ Atuple is represented as a record
« The table is a sequence of records

Issues

« Represent attributes inside the records
« Represent the records inside the blocks

Record Formats: Fixed Length

pid name descr maker

—Ll—{ L2 L3 L4

Base address (B) Address = B+L1+L2

« Information about field types same for all
records in a file; stored in system catalogs.

« Finding i’th field requires scan of record.
» Note the importance of schema information!

6

11/13/2007

Record Header

To schema
length _
T pid name descr maker
Il ‘eLlﬂ L2 L3 L4
header |
timestamp

Need the header because:
*The schema may change

for a while new+old may coexist
*Records from different relations may coexist

Variable Length Records

Other header information

header pid name descr maker

| | |<—L1‘> L2 L3 L4

l [

length

Place the fixed fields first: F1

Then the variable length fields: F2, F3, F4
Null values take 2 bytes only

Sometimes they take 0 bytes (when at the end)

Storing Records in Blocks

« Blocks have fixed size (typically 4k — 8k)

BLOCK

BLOB

Binary large objects

Supported by modern database systems

« E.g. images, sounds, etc.

Storage: attempt to cluster blocks together

CLOB = character large object
« Supports only restricted operations

File Types

« Unsorted (heap)

« Sorted (e.g. by pid)

11

Modifications: Insertion

« File is unsorted: add it to the end (easy ©)

* File is sorted:
— Is there space in the right block ?
« Yes: we are lucky, store it there
— Is there space in a neighboring block ?
« Look 1-2 blocks to the left/right, shift records
— If anything else fails, create overflow block

Overflow Blocks

Block,,, Block, Block,

n+l

Overflow

« After a while the file starts being dominated
by overflow blocks: time to reorganize

11/13/2007

Modifications: Deletions
* Free space in block, shift records
« May be able to eliminate an overflow block

 Can never really eliminate the record,
because others may point to it
— Place a tombstone instead (a NULL record)

[How can we point to a record in an RDBMS ?} 14

Modifications: Updates

* If new record is shorter than previous, easy ©

« Ifitis longer, need to shift records, create
overflow blocks

Pointers
Logical pointer to a record consists of:
 Logical block number
 An offset in the block’s header

We use pointers in Indexes and in Log entries

Note: review what a pointer in C is]

Indexes

¢ An index on a file speeds up selections on the
search key fields for the index.
— Any subset of the fields of a relation can be the search
key for an index on the relation.
— Search key is not the same as key (minimal set of fields
that uniquely identify a record in a relation).
« An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value k.

Index Classification

 Clustered/unclustered
— Clustered = records close in the index are close in the data; same as
saying that the table is ordered by the index key
— Unclustered = records close in the index may be far in the data
* Primary/secondary:
— Interpretation 1:
« Primary = is over attributes part of the primary
« Secondary = cannot reorder data
— Interpretation 2: means the same as clustered/unclustured
* B+ tree or Hash table

11/13/2007

Clustered Index Unclustered Index

« File is sorted on the index attribute « Several per table
« Only one per table

TR] I z 5
= o] :
o EJ = >
o I > ;2
: CI .

:

| i =
Clustered vs. Unclustered Index B+ Trees

» Search trees
Dataemrle e ldeain B Trees:

/4N NN . {ﬁ){}j ~75 HL - — make 1 node = 1 block
4DE¥DE i [] {n « Idea in B+ Trees:
Data Records Data Records

— Make leaves into a linked list (range queries are
CLUSTERED UNCLUSTERED easier)

B+ Trees Basics B+ Tree Example
d=2

 Parameter d = the degree [0] [[|
* Each node has 2d keys (except root) ey !
30 120 | 240 20 | 60 100 | 120 | 140
EENEENE . |

20540560

Find the key 40

k<30
Keysk< Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

» Each leaf has >=d and <= 2d keyS: 1015 18 20 [30] 40 | 50 | [0 [65 80 | 85 | 90
EREIEE e raree -
!--- Next leaf BHER
L ettt

B+ Tree Design

How large d ?

Example:

— Key size = 4 bytes

— Pointer size = 8 bytes

— Block size = 4096 byes

2d x4 + (2d+1) x 8 <= 4096
d=170

B+ Trees in Practice

» Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
 Typical capacities:
— Height 4: 133* = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
* Can often hold top levels in buffer pool:
— Level1= lpage = 8Kbytes
— Level2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 MBytes

11/13/2007

Searching a B+ Tree

 Exact key values:
Select name
— Start at the root From people
— Proceed down, to the leaf Where age = 25

» Range queries: Select name
_ From people
As above . Where 20 <= age
— Then sequential traversal and age <= 30

Insertion in a B+ Tree

Insert (K, P)

¢ Find leaf where K belongs, insert

« If no overflow (2d keys or less), halt

« If overflow (2d+1 keys), split node, insert in parent:

parent

parent
K3

Ke [ks[]

[kik2[ks [ka] ks | [k Tea] T]
p3fpalps |]|

[poTpe] P2 [rs [Pa[ps| = [pofPi]r[T[]
« If leaf, keep K3 too in right node
« When root splits, new root has 1 key only

Insertion in a B+ Tree

Insert K=19

[eo] T 1] [100J120T 20 []

[NN
\\
RSTARR

20
\

Insertion in a B+ Tree

After insertion

20 | 60 100 | 120 | 140

| 10 |15 | 18 | 19 20 [30| 40 | 50 60 | 65 80 [85| 90
[\L ol :I‘I 1A\ J‘ :l"
=

&

\

11/13/2007

Insertion in a B+ Tree

Now insert 25

[20Te] T] [200 T120] 140 |

I
AINENEE INENENEEN

10 | 15|18 | 19 20 | 30| 40 | 50 60 | 65 80 | 85| 90
L A :]'||\ :I‘ L

RRAN

\

31

Insertion in a B+ Tree

After insertion

20 | 60 | 100 | 120 | 140

10 15|18 | 19 20 (25| 30 | 40 | 50 60 | 65 80 | 85| 90

LL\W.L

Insertion in a B+ Tree

But now have to split !

[20]e] [] [200 120 140 |

ANENEE

|10|15‘15|19| zu|25‘30|40|50| |60‘65| |ao‘35|90‘

NERENES NN TN

AR EQLLMM é 4

Insertion in a B+ Tree
After the split

20 | 30 | 60 100 | 120 | 140

10‘15|18‘19||20|25| ‘ ||3o‘40|50| 60‘65| 80‘55|90‘

i IS

inNivsg m 4 4

Deletion from a B+ Tree
Delete 30

[20Ta0]e0]] [100J120T 20 []
|

AINENEE NENEEN

\\

101518 [19] [20]25 30‘40|50| 60|65‘ 80 | 85] 90
H Jr[[

RS ELL{

Deletion from a B+ Tree
After deleting 30

May change to
40, or not
<

e N

101518 [19] [20]25 |40‘50| | 60‘55| so 85| 90

eIy, NLM “

Deletion from a B+ Tree

Now delete 25

feol [[|
[20]30]e][] |1oo\1zo|140| |
ANENEE NN

\\
INMME SV | SIAVEY

ViNyaNIv//a

11/13/2007

Deletion from a B+ Tree

After deleting 25
Need to rebalance

Rotate o | | |
20 | 30 | 60 | 100 | 120 | 140

101518 | 19 20 40 | 50 60 | 65 80 85 | 90

RN NLM “

Deletion from a B+ Tree

Now delete 40

EXE
[19]30]e [] [200 120 140 |
ANENEE K
10|15|13| | 19|zo‘ ‘ |A0‘50| | |50|55‘ | ||BO|85‘90| |
MNENEESAENEANEEE IS AN

ot

Deletion from a B+ Tree
After deleting 40

Rotation not possible,
Need to merge nodes ol T T
19 | 30 | 60 100 | 120 | 140

10‘15|18‘ J19|zo| ‘ ||50‘ | | 60‘65| 80‘55|90‘ |

INEEES AV EE Y EE NS | AESE

ol tsled

40

Deletion from a B+ Tree

Final tree
oo [[|
[1Te] T 1] [100J120T 20 []
o
10 | 15| 18 19 [20 | 50 60 | 65 80 85| 90

1N

st @L{éé

3

Summary on B+ Trees

L]

Default index structure on most DBMS

Very effective at answering ‘point’ queries:
productName = ‘gizmo’

Effective for range queries:
50 < price AND price <100

Less effective for multirange:
50 < price <100 AND 2 < quant < 20

