
10/29/2007

1

Introduction to Database Systems
CSE 444

Lecture 14:
Transactions in SQL

1

Transactions in SQL

October 26, 2007

Transactions

• Major component of database systems
• Critical for most applications; arguably

more so than SQL

2

Q

• Turing awards to database researchers:
– Charles Bachman 1973
– Edgar Codd 1981 for inventing relational dbs
– Jim Gray 1998 for inventing transactions

Why Do We Need Transactions

• Concurrency control

• Recovery

3

• Recovery

In the following examples, think of a transaction as meaning a procedure.
A transaction commits when it ends successfully.
A transaction rolls back when it aborts.

Concurrency control:
Three Famous anomalies

• Dirty read
– T reads data written by T’ while T’ has not committed
– What can go wrong: T’ write more data (which T has

already read), or T’ aborts

4

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’

Dirty Reads

Client 1:
/* transfer $100 from account 1 to account 2 */

If Account1.balance > 100
then Account1.balance = Account1.balance - 100

Client 2:
/* Compute total amount */

X = Account1.balance;

5

Account2.balance = Account2.balance + 100
COMMIT

else ROLLBACK

Y = Account2.balance;

Z = X + Y;
Print(Z);
COMMIT

What goes wrong ?

Dirty Reads

Client 1:
/* transfer $100 from account 1 to account 2 */

/* tentatively move money into account 2 */
Account2.balance = Account2.balance + 100

Client 2:
/* withdraw $100 */

If Account2.balance > 100
then Account2.balance =

6

If Account1.balance > 100
then Account1.balance = Account1.balance - 100

COMMIT
else /* oops: remove $100 from Account 2 */

Account2.balance = Account2.balance - 100
ROLLBACK

Account2.balance - 100;
DISPENSE MONEY
COMMIT

else ROLLBACK

What goes wrong ?Not needed
(done by

ROLLBACK)

10/29/2007

2

Lost Updates

Client 1:
UPDATE P d t

Client 2:
UPDATE P d t

7

UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Two different users attempt to apply a discount.
Will it work ?

UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Inconsistent Read

Client 1:

UPDATE Products
Client 2:

8Note: this is a form of dirty read

SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

SELECT sum(quantity)
FROM Product

Protection against crashes

Client 1:

UPDATE Products

9What’s wrong ?

SET quantity = quantity + 5
WHERE product = ‘gizmo’

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’

Crash !

Definition
• A transaction = one or more operations, which reflects a

single real-world transition
– In the real world, this happened completely or not at all

E l

10

• Examples
– Transfer money between accounts
– Purchase a group of products
– Register for a class (either waitlist or allocated)

• If grouped in transactions, all problems in previous slides
disappear

Transactions in SQL

• In “ad-hoc” SQL:
– Default: each statement = one transaction

11

• In a program:
START TRANSACTION
[SQL statements]
COMMIT or ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

Revised Code
Client 1: START TRANSACTION

UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’
COMMIT

12

COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’
COMMIT

Now it works like a charm

10/29/2007

3

Transaction Properties
ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

13

Txn moves from a state where integrity holds, to
another where integrity holds

• Isolated
– Effect of txns is the same as txns running one after

another (ie looks like batch mode)
• Durable

– Once a txn has committed, its effects remain in the
database

ACID: Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made
– It aborts: no changes are made

14

It aborts: no changes are made

• That is, transaction’s activities are all or
nothing

ACID: Consistency

• The state of the tables is restricted by integrity
constraints
– Account number is unique

Stock amount can’t be negative

15

– Stock amount can t be negative
– Sum of debits and of credits is 0

• Constraints may be explicit or implicit
• How consistency is achieved:

– Programmer makes sure a txn takes a consistent state to
a consistent state

– The system makes sure that the txn is atomic

ACID: Isolation

• A transaction executes concurrently with
other transaction

16

• Isolation: the effect is as if each transaction
executes in isolation of the others

ACID: Durability

• The effect of a transaction must continue to
exists after the transaction, or the whole
program has terminated

17

p g

• Means: write data to disk (stable storage)

ROLLBACK

• If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

18

• This causes the system to “abort” the
transaction
– The database returns to the state without any of

the previous changes made by activity of the
transaction

10/29/2007

4

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)
• Explicit in program, when app program

finds a problem

19

p
– e.g. when qty on hand < qty being sold

• System-initiated abort
– System crash
– Housekeeping

• e.g. due to timeouts

READ-ONLY Transactions
Client 1: START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product

20

DELETE Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

Makes it
faster

Isolation Levels in SQL
1. “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”

21

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions (default):
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Isolation Level: Dirty Reads
function AllocateSeat(%request)

SET ISOLATION LEVEL READ UNCOMMITED

START TRANSACTION

Let x = SELECT Seat occupied

Plane seat
allocation

22

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

If (x == 1) /* occupied */ ROLLBACK

UPDATE Seat
SET occupied = 1
WHERE Seat.number = %request

COMMIT

What can go
wrong ?

What can go
wrong if only
the function
AllocateSeat
modifies Seat ?

function TransferMoney(%amount, %acc1, %acc2)

START TRANSACTION

Let x = SELECT Account.balance
FROM Account
WHERE Account.number = %acc1

If (x < %amount) ROLLBACK

Are dirty reads
OK here ?

23

UPDATE Account
SET balance = balance+%amount
WHERE Account.number = %acc2

UPDATE Account
SET balance = balance-%amount
WHERE Account.number = %acc1

COMMIT

What if we
switch the
two updates ?

Isolation Level: Read Committed

SET ISOLATION LEVEL READ COMMITED

Let x = SELECT Seat.occupied
FROM Seat

Stronger than
READ UNCOMMITTED

24

WHERE Seat.number = %request

/* More stuff here */

Let y = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* we may have x ≠ y ! */

It is possible
to read twice,
and get different
values

10/29/2007

5

Isolation Level: Repeatable Read

SET ISOLATION LEVEL REPEATABLE READ

Let x = SELECT Account.amount
FROM Account

Stronger than
READ COMMITTED

25

WHERE Account.number = ‘555555’

/* More stuff here */

Let y = SELECT Account.amount
FROM Account
WHERE Account.number = ‘777777’

/* we may have a wrong x+y ! */

May see incompatible
values:

another txn transfers
from acc. 55555 to
77777

Isolation Level: Serializable

SET ISOLATION LEVEL SERIALIZABLEStrongest level

26

. . . .

Default

WILL STUDY IN DETAILS IN A WEEK

The Mechanics of Disk
Mechanical characteristics:
• Rotation speed (5400RPM)
• Number of platters (1-30)
• Number of tracks (<=10000)

Spindle
Disk head Tracks

Sector

Cylinder

27

Number of tracks (< 10000)
• Number of bytes/track(105)

Platters
Arm movement

Arm assembly

Sector

Unit of read or write:
disk block

Once in memory:
page

Typically: 4k or 8k or 16k

Disk Access Characteristics
• Disk latency = time between when command is issued and

when data is in memory

• Disk latency = seek time + rotational latency

28

y y
– Seek time = time for the head to reach cylinder

• 10ms – 40ms
– Rotational latency = time for the sector to rotate

• Rotation time = 10ms
• Average latency = 10ms/2

• Transfer time = typically 40MB/s
• Disks read/write one block at a time

RAID
Several disks that work in parallel
• Redundancy: use parity to recover from disk failure
• Speed: read from several disks at once

29

Various configurations (called levels):
• RAID 1 = mirror
• RAID 4 = n disks + 1 parity disk
• RAID 5 = n+1 disks, assign parity blocks round robin
• RAID 6 = “Hamming codes”

Buffer Management in a DBMS

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL
READ
WRITE

30

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

free frame

choice of frame dictated
by replacement policy

INPUT
OUTUPT

10/29/2007

6

Buffer Manager

Needs to decide on page replacement policy

• LRU
• Clock algorithm

31

Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the DBMS to assume that the
needed data is in main memory.

Least Recently Used (LRU)

• Order pages by the time of last accessed
• Always replace the least recently accessed

32

P5, P2, P8, P4, P1, P9, P6, P3, P7

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx

Buffer Manager

Why not use the Operating System for the task??

Main reason: need fine grained control for transactions

33

Other reasons:
- DBMS may be able to anticipate access patterns
- Hence, may also be able to perform prefetching
-DBMS needs the ability to force pages to disk,
for recovery purposes

Transaction Management and the
Buffer Manager

The transaction manager operates on the
buffer pool

• Recovery: ‘log-file write-ahead’ then

34

Recovery: log file write ahead , then
careful policy about which pages to force to
disk

• Concurrency control: locks at the page
level, multiversion concurrency control

Will discuss details during the next few lectures

