2

Introduction to Database Systems CSE 444

> Lecture 14: Transactions in SQL

> > October 26, 2007

1

Transactions

- Major component of database systems
- Critical for most applications; arguably more so than SQL
- Turing awards to database researchers: – Charles Bachman 1973
 - Edgar Codd 1981 for inventing relational dbs
 - Jim Gray 1998 for inventing transactions

Why Do We Need Transactions

- · Concurrency control
- Recovery

In the following examples, think of a *transaction* as meaning a procedure. A transaction *commits* when it ends successfully. A transaction *rolls back* when it aborts.

- One task T sees some but not all changes made by T'

14

16

Transaction Properties ACID

• Atomic

- State shows either all the effects of txn, or none of them \overline{a}

Consistent

- Txn moves from a state where integrity holds, to another where integrity holds
- Isolated
 - Effect of txns is the same as txns running one after another (ie looks like batch mode)

• Durable

Once a txn has committed, its effects remain in the database

ACID: Atomicity

- Two possible outcomes for a transaction – It *commits*: all the changes are made
 - It *aborts*: no changes are made
- That is, transaction's activities are all or nothing

ACID: Consistency

- The state of the tables is restricted by integrity constraints
 - Account number is unique
 - Stock amount can't be negative
 - Sum of *debits* and of *credits* is 0
- Constraints may be <u>explicit</u> or <u>implicit</u>
- How consistency is achieved:
 - Programmer makes sure a txn takes a consistent state to a consistent state
 - The system makes sure that the txn is atomic

ACID: Isolation

- A transaction executes concurrently with other transaction
- Isolation: the effect is as if each transaction executes in isolation of the others

ACID: Durability

- The effect of a transaction must continue to exists after the transaction, or the whole program has terminated
- Means: write data to disk (stable storage)

17

13

15

ROLLBACK

- If the app gets to a place where it can't complete the transaction successfully, it can execute ROLLBACK
- This causes the system to "abort" the transaction
 - The database returns to the state without any of the previous changes made by activity of the transaction

Reasons for Rollback

- User changes their mind ("ctl-C"/cancel)
- Explicit in program, when app program finds a problem
 - e.g. when qty on hand < qty being sold
- System-initiated abort
 - System crash
 - Housekeeping
 - e.g. due to timeouts

Isolation Levels in SQL

- 1. "Dirty reads" SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
- 2. "Committed reads" SET TRANSACTION ISOLATION LEVEL READ COMMITTED
- 3. "Repeatable reads" SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
- 4. Serializable transactions (default): SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

21

19

Buffer Manager

Needs to decide on page replacement policy

- LRU
- Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the DBMS to assume that the needed data is in main memory.

Buffer Manager

Why not use the Operating System for the task??

Main reason: need fine grained control for transactions

Other reasons:

- DBMS may be able to anticipate access patterns
- Hence, may also be able to perform prefetching
- -DBMS needs the ability to force pages to disk, for recovery purposes

33

31

Transaction Management and the Buffer Manager

- The transaction manager operates on the buffer pool
- <u>**Recovery**</u>: 'log-file write-ahead', then careful policy about which pages to force to disk
- <u>Concurrency control</u>: locks at the page level, multiversion concurrency control

Will discuss details during the next few lectures 34