
10/23/2007

1

Introduction to Database Systems
CSE 444

Lecture 13
Security

1

Security

October 24 2007

Outline

SQL Security – 8.7

Two famous attacks

2

Two famous attacks

Two new trends

Optional material;
May not have time to cover
in class

Discretionary Access Control in
SQL

GRANT privileges
ON object
TO users

3

[WITH GRANT OPTIONS]

privileges = SELECT |
INSERT(column-name) |
UPDATE(column-name) |
DELETE |
REFERENCES(column-name)

object = table | attribute

Examples

GRANT INSERT, DELETE ON Customers
TO Yuppy WITH GRANT OPTIONS

Queries allowed to Yuppy:

4

Queries allowed to Yuppy:

Queries denied to Yuppy:

INSERT INTO Customers(cid, name, address)
VALUES(32940, ‘Joe Blow’, ‘Seattle’)

DELETE Customers
WHERE LastPurchaseDate < 1995

SELECT Customer.address
FROM Customer
WHERE name = ‘Joe Blow’

Examples

GRANT SELECT ON Customers TO Michael

5

Now Michael can SELECT, but not INSERT or DELETE

Examples

GRANT SELECT ON Customers
TO Michael WITH GRANT OPTIONS

6

Michael can say this:
GRANT SELECT ON Customers TO Yuppy

Now Yuppy can SELECT on Customers

10/23/2007

2

Examples

GRANT UPDATE (price) ON Product TO Leah

7

Leah can update, but only Product.price, but not Product.name

Examples
Customer(cid, name, address, balance)
Orders(oid, cid, amount) cid= foreign key

Bill h INSERT/UPDATE i h O d

8

GRANT REFERENCES (cid) ON Customer TO Bill

Now Bill can INSERT tuples into Orders

Bill has INSERT/UPDATE rights to Orders.
BUT HE CAN’T INSERT ! (why ?)

Views and Security

Name Address Balance
Mary Huston 450 99

David owns

Customers:
Fred is not
allowed to

see this

9

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

GRANT SELECT ON PublicCustomers TO Fred

David says

Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Views and Security

Name Address Balance
Mary Huston 450.99
S S l 240

David owns

Customers: John is
allowed to
see only <0

balances

10

Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

GRANT SELECT ON BadCreditCustomers TO John

David says

Views and Security
• Each customer should see only her/his record

CREATE VIEW CustomerMary
SELECT * FROM Customers
WHERE name = ‘Mary’

Name Address Balance
Mary Huston 450.99

David says

11

y
GRANT SELECT
ON CustomerMary TO Mary

Doesn’t scale.

Need row-level access control !

y
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520 CREATE VIEW CustomerSue

SELECT * FROM Customers
WHERE name = ‘Sue’

GRANT SELECT
ON CustomerSue TO Sue

. . .

Revocation

REVOKE [GRANT OPTION FOR] privileges
ON object FROM users { RESTRICT | CASCADE }

12

j { | }

Administrator says:

REVOKE SELECT ON Customers FROM David CASCADE

John loses SELECT privileges on BadCreditCustomers

10/23/2007

3

Revocation
Joe: GRANT [….] TO Art …
Art: GRANT [….] TO Bob …
Bob: GRANT [….] TO Art …
Joe: GRANT [….] TO Cal …

Same privilege,
same object,

GRANT OPTION

13

Cal: GRANT [….] TO Bob …
Joe: REVOKE [….] FROM Art CASCADE

What happens ??

Revocation

Admin

0

Revoke

14

Joe Art

Cal Bob

1

234

5

According to SQL everyone keeps the privilege

Summary of SQL Security

Limitations:
• No row level access control
• Table creator owns the data: that’s unfair !

15

… or spectacular failure:
• Only 30% assign privileges to users/roles

– And then to protect entire tables, not columns

Access control = great success story of the DB community...

Summary (cont)

• Most policies in middleware: slow, error prone:
– SAP has 10**4 tables
– GTE over 10**5 attributes
– A brokerage house has 80,000 applications

16

A brokerage house has 80,000 applications
– A US government entity thinks that it has 350K

• Today the database is not at the center of the policy
administration universe

[Rosenthal&Winslett’2004]

Two Famous Attacks

• SQL injection
• Sweeney’s example

17

SQL Injection
Your health insurance company lets you see the claims online:

First login: User: fred

[Chris Anley, Advanced SQL Injection In SQL]

18

Search claims by:

Now search through the claims :

Dr. Lee

Password: ********

SELECT…FROM…WHERE doctor=‘Dr. Lee’ and patientID=‘fred’

10/23/2007

4

SQL Injection
Now try this:

Search claims by: Dr. Lee’ OR patientID = ‘suciu’; --

19

Better:

Search claims by: Dr. Lee’ OR 1 = 1; --

…..WHERE doctor=‘Dr. Lee’ OR patientID=‘suciu’; --’ and patientID=‘fred’

SQL Injection
When you’re done, do this:

Search claims by: Dr. Lee’; DROP TABLE Patients; --

20

SQL Injection

• The DBMS works perfectly. So why is
SQL injection possible so often ?

21

• Quick answer:
– Poor programming: use stored procedures !

• Deeper answer:
– Move policy implementation from apps to DB

Latanya Sweeney’s Finding

• In Massachusetts, the Group Insurance
Commission (GIC) is responsible for
purchasing health insurance for state

22

p g
employees

• GIC has to publish the data:

GIC(zip, dob, sex, diagnosis, procedure, ...)

Latanya Sweeney’s Finding

• Sweeney paid $20 and bought the voter
registration list for Cambridge
Massachusetts:

23

GIC(zip, dob, sex, diagnosis, procedure, ...)
VOTER(name, party, ..., zip, dob, sex)

Latanya Sweeney’s Finding

• William Weld (former governor) lives in
C b id h i i VOTER

zip, dob, sex

24

Cambridge, hence is in VOTER
• 6 people in VOTER share his dob
• only 3 of them were man (same sex)
• Weld was the only one in that zip
• Sweeney learned Weld’s medical records !

10/23/2007

5

Latanya Sweeney’s Finding

• All systems worked as specified, yet an
important data has leaked

25

• How do we protect against that ?

Some of today’s research in data security address breaches
that happen even if all systems work correctly

Summary on Attacks

SQL injection:
• A correctness problem:

– Security policy implemented poorly in the application

26

Sweeney’s finding:
• Beyond correctness:

– Leakage occurred when all systems work as specified

Two Novel Techniques

• K-anonymity, information leakage
• Row-level access control

27

First Last Age RaceFirst Last Age Race

Information Leakage:
k-Anonymity

Definition: each tuple is equal to at least k-1 others

Anonymizing: through suppression and generalization

[Samarati&Sweeney’98, Meyerson&Williams’04]

Disease

28

Harry Stone 34 Afr-Am
John Reyser 36 Cauc

Beatrice Stone 47 Afr-am
John Ramos 22 Hisp

* Stone 30-50 Afr-Am
John R* 20-40 *

* Stone 30-50 Afr-am
John R* 20-40 *

Hard: NP-complete for suppression only
Approximations exists; but work poorly in practice

Flue
Measels

Pain
Fever

Information Leakage:
Query-view Security

Secret Query View(s) Disclosure ?

TABLE Employee(name, dept, phone)Have data:

[Miklau&S’04, Miklau&Dalvi&S’05,Yang&Li’04]

29

S(name) V(name,phone)

S(name,phone) V1(name,dept)
V2(dept,phone)

S(name) V(dept)
S(name)

where dept=‘HR’
V(name)

where dept=‘RD’

total

big

tiny

none

Fine-grained Access Control

Control access at the tuple level.

• Policy specification languages

30

• Policy specification languages
• Implementation

10/23/2007

6

Policy Specification Language

CREATE AUTHORIZATION VIEW PatientsForDoctors AS
SELECT Patient.*

No standard, but usually based on parameterized views.

31

FROM Patient, Doctor
WHERE Patient.doctorID = Doctor.ID

and Doctor.login = %currentUser

Context
parameters

Implementation
SELECT Patient.name, Patient.age
FROM Patient
WHERE Patient.disease = ‘flu’

32

SELECT Patient.name, Patient.age
FROM Patient, Doctor
WHERE Patient.disease = ‘flu’

and Patient.doctorID = Doctor.ID
and Patient.login = %currentUser

e.g. Oracle

Two Semantics
• The Truman Model = filter semantics

– transform reality
– ACCEPT all queries
– REWRITE queries

SELECT count(*)
FROM Patients

33

– Sometimes misleading results

• The non-Truman model = deny semantics
– reject queries
– ACCEPT or REJECT queries
– Execute query UNCHANGED
– May define multiple security views for a user

[Rizvi’04]

WHERE disease=‘flu’

Summary on Information
Disclosure

• The theoretical research:
– Exciting new connections between databases

and information theory, probability theory,

34

y, p y y,
cryptography

• The applications:
– many years away

[Abadi&Warinschi’05]

Summary of Fine Grained Access
Control

• Trend in industry: label-based security
• Killer app: application hosting

– Independent franchises share a single table at

35

p g
headquarters (e.g., Holiday Inn)

– Application runs under requester’s label, cannot
see other labels

– Headquarters runs Read queries over them
• Oracle’s Virtual Private Database

[Rosenthal&Winslett’2004]

