Introduction to Database Systems CSE 444

Lectures 8 & 9 Database Design

October 12 & 15, 2007

Announcements/Reminders

- Homework 1: solutions are posted
- Homework 2: posted later today (due Sat., Oct. 20)
- Project Phase 1 due tomorrow, 9pm

2

Outline

• The relational data model: 3.1

• Functional dependencies: 3.4

Forms

Schema Refinements = Normal

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

4

3

First Normal Form (1NF)

• A database schema is in First Normal Form if all tables are flat

Student

Student

Name	GPA	Courses
Alice	3.8	Math DB OS
Bob	3.7	OS OS
Carol	3.9	Math OS

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

 Student
 Course

 Alice
 Math

 Carol
 Math

 Alice
 DB

 Bob
 DB

 Alice
 OS

 Carol
 OS

Course
Math
DB
OS

Relational Schema Design

Conceptual Model:

Product

Pro

Normalization:

Eliminates anomalies

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Update anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

7

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeated data
- Update anomalies = Fred moves to "Bellevue"
- Deletion anomalies = Joe deletes his phone number:

what is his city?

Relation Decomposition

Break the relation into two:

	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
/	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
007 (5 4221	000 555 2121

Anomalies are gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how?)
- Easy to delete all Joe's phone numbers (how?)

Relational Schema Design (or Logical Design)

Main idea:

- · Start with some relational schema
- Find out its *functional dependencies*
- Use them to design a better relational schema

10

Functional Dependencies

- A form of constraint
 - hence, part of the schema
- Finding them is part of the database design
- · Also used in normalizing the relations

11

Functional Dependencies

Definition:

If two tuples agree on the attributes

 $A_1, A_2, ..., A_n$

then they must also agree on the attributes

 $B_1, B_2, ..., B_m$

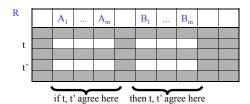
Formally:

 $A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$

When Does an FD Hold

Definition: $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if:

 $\forall t,t' \in R, (t.A_1 = t'.A_1 \wedge ... \wedge t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \wedge ... \wedge t.B_n = t'.B_n)$



Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

14

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position → Phone

15

17

13

Example

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

but not Phone → Position

Example

FD's are constraints:

- On some instances they hold
- · On others they don't

name → color category \rightarrow department color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs?

Example name → color category → department color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

What about this one?

An Interesting Observation

If all these FDs are true:

name → color category → department color, category → price

Then this FD also holds:

name, category → price

Why??

19

Goal: Find ALL Functional Dependencies

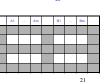
- Anomalies occur when certain "bad" FDs
- We know some of the FDs
- Need to find all FDs, then look for the bad ones

Armstrong's Rules (1/3)

 $A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$

Is equivalent to

 $\begin{bmatrix} A_1, A_2, ..., A_n \rightarrow B_1 \\ A_1, A_2, ..., A_n \rightarrow B_2 \end{bmatrix}$ $A_1, A_2, ..., A_n \rightarrow B_m$ **Splitting rule** and **Combing rule**



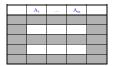
Armstrong's Rules (1/3)

 $A_1, A_2, ..., A_n \rightarrow A_i$

Trivial Rule

where i = 1, 2, ..., n

Why?



Armstrong's Rules (1/3)

Transitive Closure Rule

 $A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$ If

 $B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$ and

 $A_1, A_2, ..., A_n \rightarrow C_1, C_2, ..., C_p$ then Why?

Example (continued)

Start from the following FDs:

1. name → color
2. category → department
3. color, category → price

25

Infer the following FDs:

Inferred FD	Which Rule did we apply?
4. name, category → name	
5. name, category → color	
6. name, category → category	
7. name, category → color, category	
8. name, category → price	

Example (continued)

Answers:

name → color
 category → department
 color, category → price

Inferred FD	Which Rule
illierred FD	did we apply?
4. name, category → name	Trivial rule
5. name, category → color	Transitivity on 4, 1
6. name, category → category	Trivial rule
7. name, category → color, category	Split/combine on 5, 6
8. name, category → price	Transitivity on 3, 7

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$

The **closure**, $\{A_1, ..., A_n\}^+$ = the set of attributes B s.t. $A_1, ..., A_n \rightarrow B$

Example:

name → color category → department color, category → price

Closures

name⁺ = {name, color}

{name, category}⁺ = {name, category, color, department, price} color⁺ = {color}

Closure Algorithm

Example:

name → color

category → department color, category → price

 $X=\{A1, ..., An\}.$

Repeat until X doesn't change do: if B. $B \rightarrow C$ is a FD and

if $B_1, ..., B_n \rightarrow C$ is a FD and $B_1, ..., B_n$ are all in X then add C to X.

{name, category}+=

{ name, category, color, department, price }

Hence: name, category → color, department, price

Example

In class:

 $\begin{array}{c} R(A,B,C,D,E,F) \\ A,B \rightarrow C \\ A,D \rightarrow E \\ B \rightarrow D \\ A,F \rightarrow B \end{array}$

Compute $\{A,B\}^+$ $X = \{A, B,$

Compute $\{A, F\}^+$ $X = \{A, F,$

29

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $X \to A$
 - Compute X+
 - Check if $A \in X^+$

Using Closure to Infer ALL FDs

Example:

```
\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}
```

Step 1: Compute X+, for every X:

```
A+=A, B+=BD, C+=C, D+=D

AB+=ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD

ABC+=ABD+=ACD+=ABCD (no need to compute-why?)

BCD+=BCD, ABCD+=ABCD
```

Step 2: Enumerate all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$: $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$ 31

Another Example

• Enrollment(student, major, course, room, time)
student → major
major, course → room
course → time

What else can we infer? [in class, or at home]

32

Keys

- A superkey is a set of attributes A₁, ..., A_n s.t. for any other attribute B, we have A₁, ..., A_n → B
- A key is a minimal superkey
 - I.e. set of attributes which is a superkey and for which no subset is a superkey

33

Computing (Super)Keys

- Compute X^+ for all sets X
- If X^+ = all attributes, then X is a key
- List only the minimal X's

34

Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

35

Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

(name, category) + = name, category, price, color Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

student → address
room, time → course
student, course → room, time

(find keys at home)

37

Eliminating Anomalies

Main idea:

- $X \rightarrow A$ is OK if X is a (super)key
- $X \rightarrow A$ is not OK otherwise

38

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

What the key?

{SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency 39

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

40

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

AB→C BC→A

or

A→BC B→AC

what are the keys here?

Can you design FDs such that there are three keys?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If $A_1,...,A_n \rightarrow B$ is a non-trivial dependency in R, then $\{A_1,...,A_n\}$ is a superkey for R

In other words: there are no "bad" FDs

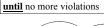
Equivalently:

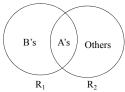
 \forall X, either (X⁺ = X) or (X⁺ = all attributes)

BCNF Decomposition Algorithm

repeat

choose $A_1,\dots,A_m \rightarrow B_1,\dots,B_n$ that violates BNCF split R into $R_1(A_1,\dots,A_m,\,B_1,\dots,B_n)$ and $R_2(A_1,\dots,A_m,$ [others]) continue with both R_1 and R_2





Is there a 2-attribute relation that is not in BCNF?

In practice, we have a better algorithm (coming up)

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

What the key?

{SSN, PhoneNumber} use SS

use SSN → Name, City to split

Example

Name	SSN	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

 $SSN \rightarrow Name, City$

SSN	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

- Let's check anomalies:
 Redundancy ?
 - Update ?
 - Delete ?

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN → name, age
age → hairColor

Decompose in BCNF (in class):

46

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: $X \neq X^+ \neq [all \ attributes]$

if (not found) then "R is in BCNF"

 $\underline{\mathbf{let}} \; \mathbf{Y} = \mathbf{X}^+ - \mathbf{X}$

<u>let</u> $Z = [all attributes] - X^+$

decompose R into R1(X \cup Y) and R2(X \cup Z) continue to decompose recursively R1 and R2

47

Find X s.t.: $X \neq X^+ \neq [all \ attributes]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN → name, age

age → hairColor

Iteration 1: Person

SSN+ = SSN, name, age, hairColor

Decompose into: P(<u>SSN</u>, name, age, hairColor) Phone(SSN, phoneNumber)

Iteration 2: P

age+ = age, hairColor

Decompose: People(<u>SSN</u>, name, age) Hair(<u>age</u>, hairColor) Phone(SSN, phoneNumber) What are the keys?

