
1

Introduction to Database Systems
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Lecture 05: Views, Constraints
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Outline

• Views 
– Chapter 6.7
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• Constraints
– Chapter 7

Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

E l ( d t t j t l )
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Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’

CREATE VIEW CustomerPrice AS

Example
Purchase(customer, product, store)
Product(pname, price)
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SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CustomerPrice(customer, price) “virtual table”

l h i

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)
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SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer  AND

u.price > 100

We can later use the view:

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime

We discuss
only virtual

views in class
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– Always up to date
• Materialized views

– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data
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Queries Over Views:
Query Modification

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y

View:
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SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer  AND

u.price > 100

, y
WHERE x.product = y.pname

Query:

Queries Over Views:
Query Modification

SELECT u.customer, v.store

Modified query:
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FROM (SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer  AND
u.price > 100

Queries Over Views:
Query Modification

SELECT x.customer, v.store

Modified and rewritten query:
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FROM Purchase x, Product y, Purchase v, 
WHERE x.customer = v.customer  AND

y.price > 100 AND
x.product = y.pname

But What About This ?

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer  AND
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u.price > 100

??

Answer

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer  AND
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u.price > 100

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v, 
WHERE x.customer = v.customer  AND

y.price > 100 AND
x.product = y.pname

Applications of Virtual Views

• Logical data independence:
– Vertical data partitioning
– Horizontal data partitioning
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• Security
– Table (view) V reveals only what the users are 

allowed to know
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Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…

Resumes
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234234 Ann Portland Clob4… Blob4…

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
. . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
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SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture 

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

When do we use vertical partitioning ?

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’
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Which of the tables T1, T2, T3 will
be queried by the system ?

Vertical Partitioning

Applications:
• When some fields are large, and rarely accessed

– E.g. Picture
di ib d d b
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• In distributed databases
– Customer personal info at one site, customer profile at 

another
• In data integration

– T1 comes from one source
– T2 comes from a different source

Horizontal Partitioning

SSN Name City Country
234234 Mary Houston USA

Customers

SSN Name City Country

234234 Mary Houston USA

CustomersInHouston
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y
345345 Sue Seattle USA
345343 Joan Seattle USA
234234 Ann Portland USA
-- Frank Calgary Canada

-- Jean Montreal Canada

SSN Name City Country

345345 Sue Seattle USA

345343 Joan Seattle USA

CustomersInSeattle

SSN Name City Country

-- Frank Calgary Canada

-- Jean Montreal Canada

CustomersInCanada

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHouston
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CustomersInHouston
UNION ALL

CustomersInSeattle
UNION ALL

. . .
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Horizontal Partitioning

SELECT name
FROM Customers
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WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

Horizontal Partitioning

CREATE VIEW Customers AS
(SELECT * FROM CustomersInHouston
WHERE it ‘H t ’)

Better:
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WHERE city = ‘Houston’)
UNION ALL

(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’
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SELECT name
FROM CustomersInSeattle

Horizontal Partitioning

Applications:
• Optimizations:

E g archived applications and active
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– E.g. archived applications and active 
applications

• Distributed databases
• Data integration

Views and Security

Name Address Balance
Mary Houston 450 99

Customers:
Fred is not
allowed to

see this
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CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

Mary Houston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Fred is
allowed to

see this

Views and Security

Name Address Balance
Mary Houston 450.99
S S l 240

Customers: John is
allowed to
see only <0

balances
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Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0
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Constraints in SQL

Constraints in SQL:
• Keys, foreign keys
• Attribute-level constraints

simplest
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• Tuple-level constraints
• Global constraints: assertions

The more complex the constraint, the harder it is to check and 
to enforce

Most
complex

Keys
CREATE TABLE Product (

name CHAR(30) PRIMARY KEY,
category VARCHAR(20))
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OR:

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
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g y ( ),
price INT,

PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

Other Keys

CREATE TABLE Product (
productID  CHAR(10),
name CHAR(30),
category VARCHAR(20)
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category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES P d t( )

Referential
integrity

constraints
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REFERENCES Product(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

May write
just Product

(why ?)

Name Category

Gizmo gadget

ProdName Store

Gizmo Wiz

Product Purchase
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Camera Photo

OneClick Photo

Camera Ritz

Camera Wiz
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Foreign Key Constraints
• OR

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20)
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• (name, category) must be a PRIMARY 
KEY

category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category) 

REFERENCES Product(name, category) 

What happens during updates ?

Types of updates:
• In Purchase: insert/update
• In Product: delete/update
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Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

• In Product: delete/update

What happens during updates ?

• SQL has three policies for maintaining 
referential integrity:

• Reject violating modifications (default)
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j g ( )
• Cascade: after a delete/update do a 

delete/update
• Set-null set foreign-key field to NULL

READING ASSIGNMENT: 7.1.5, 7.1.6

Constraints on Attributes and 
Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !
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• Constraints on tuples
CHECK condition

CREATE TABLE Purchase (
prodName CHAR(30)

What
is the difference from

Foreign-Key ?
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prodName CHAR(30)
CHECK (prodName IN

SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name
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FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)


