
1

Introduction to Database Systems
CSE 444

Lecture 05: Views, Constraints

1

October 8, 2007

Outline

• Views
– Chapter 6.7

2

• Constraints
– Chapter 7

Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

E l (d t t j t l)

3

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’

CREATE VIEW CustomerPrice AS

Example
Purchase(customer, product, store)
Product(pname, price)

4

SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CustomerPrice(customer, price) “virtual table”

l h i

Purchase(customer, product, store)
Product(pname, price)
CustomerPrice(customer, price)

5

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

We can later use the view:

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime

We discuss
only virtual

views in class

6

– Always up to date
• Materialized views

– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data

2

Queries Over Views:
Query Modification

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y

View:

7

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

, y
WHERE x.product = y.pname

Query:

Queries Over Views:
Query Modification

SELECT u.customer, v.store

Modified query:

8

FROM (SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND
u.price > 100

Queries Over Views:
Query Modification

SELECT x.customer, v.store

Modified and rewritten query:

9

FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

But What About This ?

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

10

u.price > 100

??

Answer

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

11

u.price > 100

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

Applications of Virtual Views

• Logical data independence:
– Vertical data partitioning
– Horizontal data partitioning

12

• Security
– Table (view) V reveals only what the users are

allowed to know

3

Vertical Partitioning
SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…

Resumes

13

234234 Ann Portland Clob4… Blob4…

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
. . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

14

SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

When do we use vertical partitioning ?

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

15

Which of the tables T1, T2, T3 will
be queried by the system ?

Vertical Partitioning

Applications:
• When some fields are large, and rarely accessed

– E.g. Picture
di ib d d b

16

• In distributed databases
– Customer personal info at one site, customer profile at

another
• In data integration

– T1 comes from one source
– T2 comes from a different source

Horizontal Partitioning

SSN Name City Country
234234 Mary Houston USA

Customers

SSN Name City Country

234234 Mary Houston USA

CustomersInHouston

17

y
345345 Sue Seattle USA
345343 Joan Seattle USA
234234 Ann Portland USA
-- Frank Calgary Canada

-- Jean Montreal Canada

SSN Name City Country

345345 Sue Seattle USA

345343 Joan Seattle USA

CustomersInSeattle

SSN Name City Country

-- Frank Calgary Canada

-- Jean Montreal Canada

CustomersInCanada

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHouston

18

CustomersInHouston
UNION ALL

CustomersInSeattle
UNION ALL

. . .

4

Horizontal Partitioning

SELECT name
FROM Customers

19

WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

Horizontal Partitioning

CREATE VIEW Customers AS
(SELECT * FROM CustomersInHouston
WHERE it ‘H t ’)

Better:

20

WHERE city = ‘Houston’)
UNION ALL

(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

21

SELECT name
FROM CustomersInSeattle

Horizontal Partitioning

Applications:
• Optimizations:

E g archived applications and active

22

– E.g. archived applications and active
applications

• Distributed databases
• Data integration

Views and Security

Name Address Balance
Mary Houston 450 99

Customers:
Fred is not
allowed to

see this

23

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

Mary Houston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

Fred is
allowed to

see this

Views and Security

Name Address Balance
Mary Houston 450.99
S S l 240

Customers: John is
allowed to
see only <0

balances

24

Sue Seattle -240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

5

Constraints in SQL

Constraints in SQL:
• Keys, foreign keys
• Attribute-level constraints

simplest

25

• Tuple-level constraints
• Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

Most
complex

Keys
CREATE TABLE Product (

name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

26

OR:

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),

27

g y (),
price INT,

PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

Other Keys

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20)

28

category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES P d t()

Referential
integrity

constraints

29

REFERENCES Product(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

May write
just Product

(why ?)

Name Category

Gizmo gadget

ProdName Store

Gizmo Wiz

Product Purchase

30

Camera Photo

OneClick Photo

Camera Ritz

Camera Wiz

6

Foreign Key Constraints
• OR

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20)

31

• (name, category) must be a PRIMARY
KEY

category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

What happens during updates ?

Types of updates:
• In Purchase: insert/update
• In Product: delete/update

32

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

• In Product: delete/update

What happens during updates ?

• SQL has three policies for maintaining
referential integrity:

• Reject violating modifications (default)

33

j g ()
• Cascade: after a delete/update do a

delete/update
• Set-null set foreign-key field to NULL

READING ASSIGNMENT: 7.1.5, 7.1.6

Constraints on Attributes and
Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

34

• Constraints on tuples
CHECK condition

CREATE TABLE Purchase (
prodName CHAR(30)

What
is the difference from

Foreign-Key ?

35

prodName CHAR(30)
CHECK (prodName IN

SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name

36

FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

