
1

Introduction to Database Systems
CSE 444

Lecture 03: SQL

1

October(!) 1, 2007

Outline

• Subqueries (6.3)
• Aggregations (6.4.3 – 6.4.6)
• Examples examples examples

2

• Examples, examples, examples…

Read the entire chapter 6 !

Aggregation
SELECT count(*)
FROM Product
WHERE year > 1995

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

3

Except count, all aggregations apply to a single attribute

SQL supports several aggregation operations:

sum, count, min, max, avg

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product

same as Count(*)

Aggregation: Count

4

FROM Product
WHERE year > 1995

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Purchase(product, date, price, quantity)

More Examples

5

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

Simple AggregationsPurchase

Product Date Price Quantity
Bagel 10/21 1 20

Banana 10/3 0 5 10

6

Banana 10/3 0.5 10
Banana 10/10 1 10
Bagel 10/25 1.50 20

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 20+30)

2

Grouping and Aggregation
Purchase(product, date, price, quantity)

Find total sales after 10/1/2005 per product.

7

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

8

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

1&2. FROM-WHERE-GROUPBY

Product Date Price Quantity
Bagel 10/21 1 20

9

Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

3. SELECT
Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Product TotalSales

Bagel 50

Banana 15

10

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Banana 10/10 1 10
Banana 15

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

11

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘10/1/2005’)
AS TotalSales

FROM Purchase x
WHERE x.date > ‘10/1/2005’

Another Example

SELECT product,

What does
it mean ?

12

p ,
sum(price * quantity) AS SumSales
max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

3

HAVING Clause

Same query, except that we consider only products that had
at least 100 buyers.

13

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING Sum(quantity) > 30

HAVING clause contains conditions on aggregates.

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1

14

GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

Why ?

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a a

15

Evaluation steps:
1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

GROUP BY a1,…,ak
HAVING C2

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT

2 Quantifiers

16

2. Quantifiers

3. Aggregation v.s. subqueries

4. Two examples (study at home)

1. INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *

If R, S have no
duplicates, then can

write without
subqueries
(HOW ?)

INTERSECT and EXCEPT: not in SQL Server

17

FROM S) FROM S
WHERE R.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

18

Find all companies that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy ! ☺

4

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

Fi d ll i h k l d i h i 100

19

Find all companies s.t. all of their products have price < 100

Universal: hard ! /

Find all companies that make only products with price < 100

same as:

2. Quantifiers
1. Find the other companies: i.e. s.t. some product ≥ 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product

20

2. Find all companies s.t. all their products have price < 100

FROM Product
WHERE Product.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Product.price >= 100

3. Group-by v.s. Nested Query

• Find authors who wrote ≥ 10 documents:
A 1 i h d i

This is
SQL b

Author(login,name)
Wrote(login,url)

21

• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

SQL by
a novice

3. Group-by v.s. Nested Query

• Find all authors who wrote at least 10
documents:

• Attempt 2: SQL style (with GROUP BY)

22

Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by
an expert

No need for DISTINCT: automatically from GROUP BY

3. Group-by v.s. Nested Query
Author(login,name)
Wrote(login,url)
Mentions(url,word)

23

Find authors with vocabulary ≥ 10000 words:

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

4. Two Examples

Store(sid, sname)
Product(pid, pname, price, sid)

24

Find all stores that sell only products with price > 100

same as:

Find all stores s.t. all their products have price > 100)

5

SELECT Store.name
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.name
HAVING 100 < min(Product.price)

SELECT Store.name
FROM Store
WHERE

100 < ALL (SELECT P d t i
Almost equivalent…

Why both ?

25

SELECT Store.name
FROM Store
WHERE Store.sid NOT IN

(SELECT Product.sid
FROM Product
WHERE Product.price <= 100)

100 < ALL (SELECT Product.price
FROM product
WHERE Store.sid = Product.sid)

Two Examples

Store(sid, sname)
Product(pid, pname, price, sid)

26

For each store,
find its most expensive product

Two Examples
SELECT Store.sname, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.sname

This is easy but doesn’t do what we want:

27

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

Better:

But may
return
multiple
product names
per store

Two Examples

SELECT Store.sname, max(x.pname)
FROM Store, Product x

Finally, choose some pid arbitrarily, if there are many
with highest price:

28

FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

GROUP BY Store.sname

