

CSE 444 Final --- Winter 2005

March 16, 2005 2:30 - 4:20 p.m.

Name___________________________________

Total number of points: 100

Total time: 1h 50’

This is an open book exam.

 1. [35 points] Consider the following relational schema:

 Person(name, age, city)
 Trusts(name1, name2)

The Trusts relation tells us who trusts whom. This relation is not necessarily
symmetric: i.e., if 'John' trusts 'Mary', then it is not necessarily the case that 'Mary'
trusts 'John'. This relation is not necessarily transitive: i.e., if 'John' trusts 'Mary' and if
'Mary' trusts 'Fred', it is not necessarily the case that ‘John' trusts 'Fred'.

a. [15 points] For each pairs of queries Q1, Q2 below, indicate whether Q1 is
'contained' in Q2, i.e. if every answer returned by Q1 is also returned by Q2. You
have to answer contained or not contained to each question. For example, if Q1 and
Q2 were:

 Q1: select distinct x.city
 from Person x, Trusts y
 where x.age > 40 and x.name = y.name1
 Q2: select distinct x.city
 from Person x
 where x.age > 20

 then you would say that Q1 is contained in Q2. However, if Q1 and Q2 were:

 Q1: select distinct x.city
 from Person x, Trusts y
 where x.name = y.name1 and y.name2 = 'Fred'

 Q2: select distinct x.city
 from Person x

 then you would say that Q1 is not contained in Q2.

 i.
 Q1: select distinct x.name1
 from Trusts x, Trusts y
 where x.name2 = y.name1 and

y.name2='Betty'

 Q2: select distinct x.name1
 from Trusts x
 where x.name2='Betty'

 ii.
 Q1: select distinct x.name1
 from Trusts x
 where x.name2 = 'Fred'

 Q2: select distinct x.name1
 from Trusts x, Trusts y, Trusts z
 where x.name2 = y.name2 and
 y.name1 = z.name1 and
 z.name2 = 'Fred'

 iii.
 Q1: select x.name, count(*)
 from Person x, Trust y
 where x.city = 'Seattle' and
 x.age > 25 and
 x.name = y.name1
 group by x.name

 Q2: select x.name, count(*)
 from Person x, Trust y
 where x.city = 'Seattle' and

x.name = y.name1
 group by x.name

 iv.
 Q1: select x.city, count(*)
 from Person x, Trust y
 where x.city = 'Seattle' and
 x.age > 25 and
 x.name = y.name1
 group by x.city

 Q2: select x.city, count(*)
 from Person x, Trust y
 where x.city = 'Seattle' and

x.name = y.name1
 group by x.city

b. [20 points]
 A "loner" is a person who trusts no one but himself.
 A "loyal" is a person who trusts only those who trust him.
 A "ruler" is a person who trusts only those who trust only him.

Indicate for each of the queries below whether it computes the loners, or the loyals, or
the rulers, or none of the above:

 i.
 select distinct x.name1
 from Trusts x
 where x.name1 not in
 (select y.name1
 from Trusts y
 where y.name2 in
 (select z.name1
 from Trusts z
 where z.name2 != y.name1))

ii.
 select distinct x.name1
 from Trusts x
 where x.name2 not in

(select y.name2
 from Trusts y
 where x.name1=y.name1
 and y.name2 != x.name1)

iii.
 select distinct x.name1
 from Trusts x
 where x.name1 in
 (select y.name1
 from Trusts y
 where y.name2 not in
 (select z.name1
 from Trusts z
 where z.name2 = y.name1))

iv.
 select distinct x.name1
 from Trusts x
 where x.name1 not in
 (select y.name1
 from Trusts y
 where y.name2 not in
 (select z.name1
 from Trusts z
 where z.name2 = y.name1))

2. [20 points] Consider an XML document containing information about job postings and
job applications. The postings are grouped by company, and applications are listed under
postings. An application contains only the applicant's name. For example:

 <jobs>
 <company>
 <name> MicroScience Corp. </name>
 <posting>
 <jobtitle> sales rep </jobtitle>
 <salary> 30000 </salary>
 <application> Mark </application>
 <application> Lucy </application>
 <application> Frank </application>
 </posting>
 <posting>
 <jobtitle> technology consultant </jobtitle>
 <salary> 80000 </salary>
 <application> Lucy </application>
 <application> Fred </application>
 <application> Mark </application>
 <application> Betty </application>
 </posting>
 </company>
 <company>
 <name> MacroConsulting Inc. </name>
 <posting>
 <jobtitle> technology consultant </jobtitle>
 <salary> 40000 </salary>
 <application> Frank </application>
 </posting>
 <posting>
 <jobtitle> debugger </jobtitle>
 <salary> 20000 </salary>
 </posting>
 <posting>
 <jobtitle> programmer analyst </jobtitle>
 <salary> 35000 </salary>
 <application> Lucy </application>
 <application> Mark </application>
 </posting>
 </company>
 </jobs>

a. [10 points] For each of the XPath expressions, indicate how many answers it will
return on the example XML document on previous page. For example, if the XPath
expression is

 /jobs/company[name/text()='MacroConsulting Inc.’]/posting

 then you will answer 3. For each question, you have to turn in a number.

 i. //application

 ii. /jobs/company/posting[salary/text()>60000]//application

 iii. /jobs/company[posting/salary/text()>60000]//application

 b. [10 points] Write an XQuery expression that returns the names of all applicants who

submitted applications to at least two companies. Your query should a list of
<name> elements, and each element should be included only once. For example, if
your query were to run on the XML document shown above, then it will return:

 <name> Mark </name>
 <name> Lucy </name>
 <name> Frank </name>

3. [35 points]
a. [15 points] Consider a transaction T consisting of the following actions:

 START, R(A), R(B), W(A), W(B), COMMIT

 This generates in the following log entries:

 <START T>
 <T, A, 10>
 <T, B, 20>
 <COMMIT T>

We examine several sequences of write operations to disk. Each line represents one
disk write, e.g. <T, A, 10> represents the operation that writes this log entry to disk,
while OUTPUT(A) represents writing the A element to disk.

 S1: <START T>
 OUTPUT(A)
 OUTPUT(B)
 <T, A, 10>
 <T, B, 20>
 <COMMIT T>

S2: <START T>
 <T, A, 10>
 <T, B, 20>
 OUTPUT(B)
 OUTPUT(A)
 <COMMIT T>

 S3: <START T>
 <T, A, 10>
 <T, B, 20>
 <COMMIT T>
 OUTPUT(A)
 OUTPUT(B)

 S4: <START T>
 <T, A, 10>
 OUTPUT(A)
 <T, B, 20>
 OUTPUT(B)
 <COMMIT T>

i. [5 points] Assume that the transaction manager uses an undo log. Which of the
above sequences is legal, according to the rules of the undo log? You have to turn in
a list of sequence names, e.g. S1, S3, S4.

ii. [5 points] Assume that the transaction manager uses a redo log. Which of the
above sequences is legal, according to the rules of the redo log?

iii. [5 points] Assume that the transaction manager uses a undo/redo log. (Assume
that the entries <T, A, 10> and <T, B, 20> are replaced with <T, A, 1, 10> and <T, B,
2, 20>). Which of the above sequences is legal, according to the rules of the
undo/redo log?

b. [20 points] Consider the following schedule:

START(T1), START(T2), R1(A), R2(B), W1(B), W2(C), COMMIT(T1), COMMIT(T2)

i. [4 points] Draw the precedence graph, and indicate whether the schedule is
serializable. For this question you will ignore the START and COMMIT actions, and
consider only the R and W actions.

ii. [8 points] Assume a lock-based concurrency control manager, which automatically
introduces a lock action right before each read or write, and introduces all unlock
actions before commit.

⎯ Indicate up to which point the schedule can execute, by drawing a line below
after the last action that can execute:

START(T1), START(T2), R1(A), R2(B), W1(B), W2(C), COMMIT(T1), COMMIT(T2)

⎯ Indicate the subsequent actions, in the order in which they are scheduled by
the lock-based concurrency control manager. You have to turn in a sequence
of actions, e.g. COMMIT(T2), W2(C).

iii. [8 points] Assume a concurrency control manager based on timestamps.

⎯ Indicate up to which point the schedule can execute, by drawing a line below
after the last action that can execute:

START(T1), START(T2), R1(A), R2(B), W1(B), W2(C), COMMIT(T1), COMMIT(T2)

⎯ Indicate the subsequent actions, in the order in which they are scheduled by
the concurrency control manager based on timestamps.

4. [10 points] Query execution. Consider two tables R(A, B) and S(C, D), and the

following statistics:

 B(R) = 5
 T(R) = 20
 B(S) = 100
 T(S) = 400
 V(S, C) = 50
 M = 1000

There is a clustered index on S.C. Consider the logical operator R B=C S, and the
following two physical operators that can be used to implement it:

 P1 = main memory hash-join
 P2 = index join

Compute for each of the number of disk I/O's required to execute the operator. You
have to turn in two numbers, e.g. COST(P1)=42245, COST(P2)= 7.

<>

