
1

1

Lecture 18-19:
Concurrency Control

Wednesday, February 22, 2006
and

Friday, February 24, 2006

2

Announcements

• Homework 4 is posted

• Mon, 2/27: Guest Lecture Indexes
Prof. Magda Balazinska (CSE, UW)

• Wed, 3/1: Guest Lecture DB Administration
Shankar Pal, (Microsoft, SQL Server group)

2

3

Outline

• Concurrency control by timestamps 18.8
• Concurrency control by validation 18.9

4

Timestamps

Every transaction receives a unique timestamp
TS(T)

Could be:

• The system’s clock
• A unique counter, incremented by the

scheduler

3

5

Timestaps

The timestamp order defines
the searialization order of the transaction

The timestamp order defines
the searialization order of the transaction

Main invariant:

6

Timestamps

Associate to each element X:
• RT(X) = the highest timestamp of any

transaction that read X
• WT(X) = the highest timestamp of any

transaction that wrote X
• C(X) = the commit bit: says if the

transaction with highest timestamp that
wrote X commited

These are associated to each page X in the buffer pool

4

7

Main Idea
For any two conflicting actions, ensure that

their order is the serialized order:
In each of these cases
• wU(X) . . . rT(X)
• rU(X) . . . wT(X)
• wU(X) . . . wT(X)
Check that TS(U) < TS(T)

When T wants to read X, rT(X), how do we
know U, and TS(U) ?
When T wants to read X, rT(X), how do we
know U, and TS(U) ?

Read too
late ?

Write too
late ?

No problem
(WHY ??)

8

Details

Read too late:
• T wants to read X, and TS(T) < WT(X)

START(T) … START(U) … wU(X) . . . rT(X)START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

5

9

Details

Write too late:
• T wants to write X, and

WT(X) < TS(T) < RT(X)

START(T) … START(U) … rU(X) . . . wT(X)START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

Why do we check WT(X) < TS(T) ????

10

Details

Write too late, but we can still handle it:
• T wants to write X, and

TS(T) < RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(but see later…)

6

11

More Problems

Read dirty data:
• T wants to read X, and WT(X) < TS(T)
• Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=1, then T needs to wait for it to become 0

12

More Problems

Write dirty data:
• T wants to write X, and WT(X) > TS(T)
• Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=1, then T needs to wait for it to become 0

7

13

Timestamp-based Scheduling

When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X),
C(X), and decides one of:

• To grant the request, or
• To rollback T (and restart with later

timestamp)
• To delay T until C(X) = 0

14

Timestamp-based Scheduling

RULES:
• There are 4 long rules in the textbook, on

page 974
• You should be able to understand them, or

even derive them yourself, based on the
previous slides

• Make sure you understand them !

READING ASSIGNMENT: 18.8.4READING ASSIGNMENT: 18.8.4

8

15

Multiversion Timestamp

• When transaction T requests r(X)
but WT(X) > TS(T),
then T must rollback

• Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

• Let T read an older version, with appropriate
timestamp

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

16

Details

• When wT(X) occurs create a new version, denoted
Xt where t = TS(T)

• When rT(X) occurs, find a version Xt such that t <
TS(T) and t is the largest such

• WT(Xt) = t and it never chanes
• RD(Xt) must also be maintained, to reject certain

writes (why ?)
• When can we delete Xt: if we have a later version

Xt1 and all active transactions T have TS(T) > t1

9

17

Tradeoffs

• Locks:
– Great when there are many conflicts
– Poor when there are few conflicts

• Timestamps
– Poor when there are many conflicts (rollbacks)
– Great when there are few conflicts

• Compromise
– READ ONLY transactions → timestamps
– READ/WRITE transactions → locks

18

Concurrency Control by
Validation

• Each transaction T defines a read set RS(T) and a
write set WS(T)

• Each transaction proceeds in three phases:
– Read all elements in RS(T). Time = START(T)
– Validate (may need to rollback). Time = VAL(T)
– Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)Main invariant: the serialization order is VAL(T)

10

19

Avoid rT(X) - wU(X) Conflicts

Write phaseValidateRead phaseU:

START(U) VAL(U) FIN(U)

Validate ?Read phaseT:

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

conflicts

20

Avoid wT(X) - wU(X) Conflicts

Write phaseValidateRead phaseU:

START(U) VAL(U) FIN(U)

Write phase ?ValidateRead phaseT:

START(T)
VAL(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

conflicts

11

21

Final comments

• Locks and timestamps: SQL Server, DB2

• Validation: Oracle

(more or less)

