Lecture 16:
Recovery

Wednesday, February 15, 2006

Qutline

» Checkpointing
* CRedo logging 17.3
* Redo/undo 17.4

Checkpointing

Checkpoint the database periodically

 Stop accepting new transactions

Wait until all current transactions complete
Flush log to disk

Write a <CKPT> log record, flush

Resume transactions

Undo Recovery with
Checkpointing

<T9,X9,v9> .
. other transactions
During recovery, -
Can stop at first (a1l completed)
<CKPT> <CKPT>

t | <START 72>
<START T3
<START T5>
<START T4>
<T1,X1vl>
<T5,X5,v5>
<T4,X4v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2> 4

transactions T2,T3,T4,T5

Nonquiescent Checkpointing

» Problem with checkpointing: database
freezes during checkpoint

» Would like to checkpoint while database is
operational

« Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

Nonquiescent Checkpointing

o Write a <START CKPT(TL,...,Tk)>
where T1,..., Tk are all active transactions

» Continue normal operation

* When all of T1,...,Tk have completed, write
<END CKPT>

Undo Recovery with
Nonquiescent Checkpointing

During recovery,
Can stop at first
<CKPT>

<START CKPT T4, T5, T6>

<END CKPT>

earlier transactions plus
T4,T5,T5

T4, T5, T6, plus
later transactions

later transactions

Log records

Redo Logging

o <START T> =transaction T has begun
o« <COMMIT T> =T has committed

e <ABORT T>=T has aborted

o <T,X,v>=T has updated element X, and its
new value is v

Action T MemA | MemB | Disk A Disk B Log
<START T>
READ(A 1) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A 16>
READ(Bt) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

» Hence: OUTPUTSs are done late

10

Action T MemA | MemB | Disk A Disk B Log
<START T>
READ(A 1) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A 16>
READ(Bt) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
///@:OM MIT T
@r PUT(;)t 16 16 16 | 16| 8
@FUT@:/IG/ 16 16 16 16

11

Recovery with Redo Log

After system’s crash, run recovery manager

 Step 1. Decide for each transaction T
whether it is completed or not

— <START T>....<COMMIT T>.... =yes
— <START T>...<ABORT T>....... =yes
—<START T>. i =no

» Step 2. Read log from the beginning, redo
all updates of committed transactions

12

Recovery with Redo Log

<START T1>
<T1,X1,yv1l>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

13

Nonquiescent Checkpointing

o Write a <START CKPT(TL,...,Tk)>
where T1,..., Tk are all active transactions

 Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

* When all blocks have been written, write
<END CKPT>

14

Redo Recovery with
Nonquiescent Checkpointing

.<”START T1>
Step 1: IOOk fOI’ .<”COMMIT T1> Step 2: redo
The last <START T4> frO:T_l tftle
earlies
<END CKPT>
. <START CKPT T4, T5, T6> start Of
T4, T5,T6
— ignorin
All OUTPUTS g g
of T1 are <END CKPT> transactions
known to be on disk committed
earlier
<START CKPT T9, T10>
15

Comparison Undo/Redo

* Undo logging:
— OUTPUT must be done early
— If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) — inefficient
* Redo logging
— OUTPUT must be done late

— If <COMMIT T>is not seen, T definitely has not written any of its
data to disk (hence there is not dirty data on disk, no need to undo)
— inflexible

* Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

16

Undo/Redo Logging

Log records, only one change

o <T,X,u,v>=T has updated element X, its
old value was u, and its new value is v

17

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

18

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A8,16>
READ(Bt) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMI T2

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
» Redo all committed transaction, top-down

» Undo all uncommitted transactions, bottom-up

20

10

Recovery with Undo/Redo Log

<START T1>
<T1,X1,yv1l>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

21

11

