
1

1

Lecture 16:
Recovery

Wednesday, February 15, 2006

2

Outline

• Checkpointing
• CRedo logging 17.3
• Redo/undo 17.4

2

3

Checkpointing

Checkpoint the database periodically
• Stop accepting new transactions
• Wait until all current transactions complete
• Flush log to disk
• Write a <CKPT> log record, flush
• Resume transactions

4

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

transactions T2,T3,T4,T5

other transactions

3

5

Nonquiescent Checkpointing

• Problem with checkpointing: database
freezes during checkpoint

• Would like to checkpoint while database is
operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

6

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Continue normal operation
• When all of T1,…,Tk have completed, write

<END CKPT>

4

7

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

T4, T5, T6, plus
later transactions

earlier transactions plus
T4, T5, T5

later transactions
Q: why do we need
<END CKPT> ?

Q: why do we need
<END CKPT> ?

8

Redo Logging

Log records
• <START T> = transaction T has begun
• <COMMIT T> = T has committed
• <ABORT T>= T has aborted
• <T,X,v>= T has updated element X, and its

new value is v

5

9

1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

10

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

• Hence: OUTPUTs are done late

6

11

1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

12

Recovery with Redo Log

After system’s crash, run recovery manager
• Step 1. Decide for each transaction T

whether it is completed or not
– <START T>….<COMMIT T>…. = yes
– <START T>….<ABORT T>……. = yes
– <START T>……………………… = no

• Step 2. Read log from the beginning, redo
all updates of committed transactions

7

13

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

14

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

• Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

• When all blocks have been written, write
<END CKPT>

8

15

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

16

Comparison Undo/Redo
• Undo logging:

– OUTPUT must be done early
– If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to redo) – inefficient
• Redo logging

– OUTPUT must be done late
– If <COMMIT T> is not seen, T definitely has not written any of its

data to disk (hence there is not dirty data on disk, no need to undo)
– inflexible

• Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

9

17

Undo/Redo Logging

Log records, only one change
• <T,X,u,v>= T has updated element X, its

old value was u, and its new value is v

18

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

10

19

1616161616OUTPUT(B)

<COMMIT T>

816161616OUTPUT(A)

<START T>

<T,B,8,16>

<T,A,8,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

Can OUTPUT whenever we want: before/after COMMIT

20

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
• Redo all committed transaction, top-down
• Undo all uncommitted transactions, bottom-up

11

21

Recovery with Undo/Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

