
1

1

Lecture 06
Data Modeling: E/R Diagrams

Wednesday, January 18, 2006

2

Outline

• Data Definition Language (6.6)
• Views (6.7)
• Constraints (Chapter 7)

• We begin E/R diagrams (Chapter 2)

2

3

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Data types:
Defines the types.

Data definition: defining the schema.

• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

4

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

3

5

Deleting or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

Altering: (adding or removing an attribute).

What happens when you make changes to the schema?

Example:

DROP Person; DROP Person; Example: Exercise with care !!

6

Default Values
Specifying default values:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

The default of defaults: NULL

4

7

Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

Sequential scan of the file Person may take long

SELECT *
FROM Person
WHERE name = “Smith”

SELECT *
FROM Person
WHERE name = “Smith”

8

• Create an index on name:

Indexes

Smith ….….CharlesBettyAdam

B+ trees have fan-out of 100s: max 4 levels !
Will discuss in the second half of this course

5

9

Creating Indexes

CREATE INDEX nameIndex ON Person(name)CREATE INDEX nameIndex ON Person(name)

Syntax:

10

Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

Why not create indexes on everything?

CREATE INDEX ageIndex ON Person (age)CREATE INDEX ageIndex ON Person (age)

SELECT *
FROM Person
WHERE age > 25 AND age < 28

SELECT *
FROM Person
WHERE age > 25 AND age < 28

6

11

Creating Indexes
Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

Helps in:

SELECT *
FROM Person
WHERE city = “Seattle”

SELECT *
FROM Person
WHERE city = “Seattle”

But not in:

CREATE INDEX doubleindex ON
Person (age, city)

CREATE INDEX doubleindex ON
Person (age, city)Example:

SELECT *
FROM Person
WHERE age = 55

SELECT *
FROM Person
WHERE age = 55

and even in:

12

The Index Selection Problem

• Why not build an index on every attribute ?
On every pair of attributes ? Etc. ?

• The index selection problem is hard:
balance the query cost v.s. the update cost,
in a large application workload

7

13

Defining Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = “Development”

14

Person(name, city)
Purchase(buyer, seller, product, store)
Product(name, maker, price, category)

CREATE VIEW Seattle-Purchase AS

SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.name = y.buyer

CREATE VIEW Seattle-Purchase AS

SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND

x.name = y.buyer

Example

Seattle-Purchase(buyer, seller, product, store) “virtual table”

8

15

SELECT v.name, u.store
FROM Seattle-Purchase u, Product v
WHERE u.product = v.name AND

v.category = ‘shoes’

SELECT v.name, u.store
FROM Seattle-Purchase u, Product v
WHERE u.product = v.name AND

v.category = ‘shoes’

We can later use the view:

16

What Happens When We Query
a View ?

SELECT v.name, y.store
FROM Person x, Purchase y, Product v
WHERE x.city = ‘Seattle’ AND

x.name = y.buyer AND
y.product = v.name AND
v.category = ‘shoes’

SELECT v.name, y.store
FROM Person x, Purchase y, Product v
WHERE x.city = ‘Seattle’ AND

x.name = y.buyer AND
y.product = v.name AND
v.category = ‘shoes’

SELECT v.name, u.store
FROM Seattle-Purchase u, Product v
WHERE u.product = v.name AND

v.category = ‘shoes’

SELECT v.name, u.store
FROM Seattle-Purchase u, Product v
WHERE u.product = v.name AND

v.category = ‘shoes’

9

17

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

• Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data

18

Purchase(buyer, seller, product, store)
Product(name, maker, price, category)

CREATE VIEW Expensive-Product AS
SELECT name, maker
FROM Product
WHERE price > 100

CREATE VIEW Expensive-Product AS
SELECT name, maker
FROM Product
WHERE price > 100

Updating Views: Part 1

INSERT INTO Expensive-Product
VALUES(‘Gizmo’, ‘Gadgets INC.’)

INSERT INTO Expensive-Product
VALUES(‘Gizmo’, ‘Gadgets INC.’)

INSERT INTO Product
VALUES(‘Gizmo’, ‘Gadgets INC.’, NULL, NULL)

INSERT INTO Product
VALUES(‘Gizmo’, ‘Gadgets INC.’, NULL, NULL)

10

19

CREATE VIEW Toy-Product AS
SELECT name, maker
FROM Product
WHERE category = ‘Toys’

CREATE VIEW Toy-Product AS
SELECT name, maker
FROM Product
WHERE category = ‘Toys’

Updating Views: Part 2

INSERT INTO Toy-Product
VALUES(‘Gizmo’, ‘Gadgets INC.’)

INSERT INTO Toy-Product
VALUES(‘Gizmo’, ‘Gadgets INC.’)

INSERT INTO Product
VALUES(‘Gizmo’, ‘Gadgets INC.’, NULL, NULL)

INSERT INTO Product
VALUES(‘Gizmo’, ‘Gadgets INC.’, NULL, NULL)

Note
this

Purchase(buyer, seller, product, store)
Product(name, maker, price, category)

20

CREATE VIEW Buyer-Maker AS
SELECT x.buyer, y.maker
FROM Purchase x, Product y
WHERE x.product = y.name

CREATE VIEW Buyer-Maker AS
SELECT x.buyer, y.maker
FROM Purchase x, Product y
WHERE x.product = y.name

Updating Views: Part 3

INSERT INTO Buyer-Maker
VALUES(‘John Smith’, ‘Gadgets INC.’)

INSERT INTO Buyer-Maker
VALUES(‘John Smith’, ‘Gadgets INC.’)

? ? ? ? ?? ? ? ? ?

Non-updateable
view

Purchase(buyer, seller, product, store)
Product(name, maker, price, category)

Most views are
non-updateable

11

21

Constraints in SQL

• A constraint = a property that we’d like our
database to hold

• The system will enforce the constraint by
taking some actions:
– forbid an update
– or perform compensating updates

22

Constraints in SQL

Constraints in SQL:
• Keys, foreign keys
• Attribute-level constraints
• Tuple-level constraints
• Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

simplest

Most
complex

12

23

Keys

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

24

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

40GadgetGizmo

30

20

10

Price

PhotoGizmo

PhotoCamera

GadgetGizmo

CategoryName Product(name, category, price)

13

25

Other Keys

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

26

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES Product(name),
date DATETIME)

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES Product(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

(why ?)

14

27

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

28

Foreign Key Constraints
• OR

• (name, category) must be a PRIMARY
KEY

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

15

29
PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

What happens during updates ?

Types of updates:
• In Purchase: insert/update
• In Product: delete/update

30

What happens during updates ?

• SQL has three policies for maintaining
referential integrity:

• Reject violating modifications (default)
• Cascade: after a delete/update do a

delete/update
• Set-null set foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6

16

31

Constraints on Attributes and
Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples
CHECK condition

32

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

17

33

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

34

Final Comments on Constraints

• Can give them names, and alter later
– Read in the book !!!

• We need to understand exactly when they
are checked

• We need to understand exactly what actions
are taken if they fail

