Supplemental Notes:
Practical Aspects of Transactions

THIS MATERIAL IS OPTIONAL

Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
1item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk
before the transaction commits?

Easiest for recovery: NO-STEAL/FORCE
Highest performance: STEAL/NO-FORCE

Solution: Use a Log

Enables the use of STEAL and NO-FORCE
Log: append-only file containing log records
For every update, commit, or abort operation
— Write physical, logical, physiological log record
— Note: multiple transactions run concurrently, log records are interleaved
After a system crash, use log to:

— Redo some transaction that did commit

— Undo other transactions that didn’t commit

Write-Ahead Log

e All log records pertaining to a page are written to disk
before the page 1s overwritten on disk

e All log records for transaction are written to disk before
the transaction 1s considered committed
— Why is this faster than FORCE policy?

 Committed transaction: transactions whose commit log
record has been written to disk

ARIES Method

* Write-Ahead Log

e Three pass algorithm

— Analysis pass
* Figure out what was going on at time of crash
e List of dirty pages and running transactions

— Redo pass (repeating history principle)
* Redo all operations, even for transactions that will not commit
* Get back state at the moment of the crash

— Undo pass
* Remove effects of all uncommitted transactions

* Log changes during undo in case of another crash during undo

ARIES Method Illustration

Start of oldest First update

in—progress potentially Checkpoint End of Log
transaction lost during crash
IIII| IIIIIIIIIIIIIIIIIIIIIIIIIIII I II ll Log {tir.'le _-"
= Analysis
- Redo
- Undo

Figure 3: The Three Passes of ARIES Restart

[Figure 3 from Franklin97]

ARIES Method Elements

e Each page contains a pageLLSN
— Log Sequence Number of log record for the latest update to that page

— Will serve to determine if an update needs to be redone

e Physiological logging
— page-oriented REDO
» Possible because will always redo all operations in order
— logical UNDO

* Needed because will only undo some operations

ARIES Method Data Structures

e Transaction table

— Lists all running transactions (active transactions)

— With lastLSN, most recent update by transaction
e Dirty page table

— Lists all dirty pages

— With recoveryLLSN, LSN that caused page to be dirty
e Write ahead log contains log records

— LSN
— prevLSN: previous LSN for same transaction

Checkpoints

e Write into the log
— Contents of transactions table

— Contents of dirty page table

 Enables REDO phase to restart from earliest
recoveryLSN 1n dirty page table
— Shortens REDO phase

Analysis Phase

e Goal

— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
» Conservative estimate of dirty pages

— Identify active transactions when crashed

e Approach
— Rebuild transactions table and dirty pages table

— Reprocess the log from the beginning (or checkpoint)
e Only update the two data structures

— Find oldest recoveryLSN (firstLSN) in dirty pages tables

10

Redo Phase

e (Goal: redo all updates since firstLSN

e For each log record

— If affected page is not in the Dirty Page Table then do not update

— If affected page is in the Dirty Page Table but recoveryLSN > LSN
of record, then no update

— FElse if pageLLSN > LSN, then no update
* Note: only condition that requires reading page from disk

— Otherwise perform update

11

Undo Phase

e @Goal: undo effects of aborted transactions

e Jdentifies all loser transactions in trans. table

e Scan log backwards

Undo all operations of loser transactions
Undo each operation unconditionally
All ops. logged with compensation log records (CLR)

Never undo a CLR
e Look-up the UndoNextLSN and continue from there

12

Handling Crashes during Undo

s, _] s
Write Write Write %7 CLR FOR CLR FOR ﬁ%} i CLR FOR
page 1 page 1 page 1 . LSN 30 LEN 20 g LsN 10
I_I{jg {tlrl‘](l- _-'} -l--| ---------------- | -------------- 1 ------------------------------ '::l% ------------ #}% ------------------------- '::l% ------
SN0 g 20 30 start 40 50 Restart 60

! -

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

13

Implementation: Locking

Can serve to enforce serializability
Two types of locks: Shared and Exclusive

Also need two-phase locking (2PL)

— Rule: once transaction releases lock, cannot acquire any additional
locks!

— So two phases: growing then shrinking

Actually, need strict 2PL

— Release all locks when transaction commits or aborts

14

Phantom Problem

A “phantom” 1s a tuple that 1s invisible during part of a
transaction execution but not all of it.

Example:
— TO: reads list of books in catalog
— TI: inserts a new book into the catalog

— T2: reads list of books in catalog
e New book will appear!

Can this occur?
Depends on locking details (eg, granularity of locks)
To avoid phantoms needs predicate locking

15

Deadlocks

Two or more transactions are waiting for each other to
complete

Deadlock avoidance
— Acquire locks in pre-defined order
— Acquire all locks at once before starting

Deadlock detection

— Timeouts
— Wait-for graph (this 1s what commercial systems use)

16

Degrees of Isolation

Isolation level “serializable” (1.e. ACID)
— Golden standard
— Requires strict 2PL and predicate locking
— But often too inefficient

— Imagine there are few update operations and many long read
operations

Weaker 1solation levels
— Sacrifice correctness for efficiency
— Often used in practice (often default)
— Sometimes are hard to understand

17

Degrees of Isolation

 Four levels of isolation
— All levels use long-duration exclusive locks
— READ UNCOMMITTED: no read locks
— READ COMMITTED: short duration read locks
— REPEATABLE READ:

e Long duration read locks on individual items

— SERIALIZABLE:

e All locks long duration and lock predicates

e Trade-off: consistency vs concurrency
 Commercial systems give choice of level

18

Lock Granularity

e Fine granularity locking (e.g., tuples)
— High concurrency

— High overhead in managing locks

e Coarse grain locking (e.g., tables)
— Many false conflicts

— Less overhead in managing locks

e Alternative techniques
— Hierarchical locking (and intentional locks)
— Lock escalation

19

The Tree Protocol

 An alternative to 2PL, for tree structures

 E.g. B-trees (the indexes of choice in databases)

* Because
— Indexes are hot spots!

— 2PL would lead to great lock contention

20

The Tree Protocol

Rules:
e The first lock may be any node of the tree

e Subsequently, a lock on a node A may only be acquired if the
transaction holds a lock on its parent B

e Nodes can be unlocked in any order (no 2PL necessary)
e “Crabbing”

— First lock parent then lock child

— Keep parent locked only if may need to update it

— Release lock on parent if child is not full

e The tree protocol is NOT 2PL, yet ensures conflict-serializability !

21

Other Techniques

e DB2 and SQL Server use strict 2PL

e Multiversion concurrency control (Postgres)
— Snapshot isolation (also available in SQL Server 2005)
— Read operations use old version without locking

e Optimistic concurrency control

— Timestamp based
— Validation based (Oracle)

— Optimistic techniques abort transactions instead of blocking them when
a conflict occurs

22

Summary

e Transactions are a useful abstraction
* They simplify application development

e DBMS must be careful to maintain ACID
properties in face of

— Concurrency
— Failures

23

