Supplemental Notes:
Practical Aspects of Transactions

THIS MATERIAL IS OPTIONAL




Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
1item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk
before the transaction commits?

Easiest for recovery: NO-STEAL/FORCE
Highest performance: STEAL/NO-FORCE



Solution: Use a Log

Enables the use of STEAL and NO-FORCE
Log: append-only file containing log records
For every update, commit, or abort operation
— Write physical, logical, physiological log record
— Note: multiple transactions run concurrently, log records are interleaved
After a system crash, use log to:

— Redo some transaction that did commit

— Undo other transactions that didn’t commit



Write-Ahead Log

e All log records pertaining to a page are written to disk
before the page 1s overwritten on disk

e All log records for transaction are written to disk before
the transaction 1s considered committed
— Why is this faster than FORCE policy?

 Committed transaction: transactions whose commit log
record has been written to disk



ARIES Method

* Write-Ahead Log

e Three pass algorithm

— Analysis pass
* Figure out what was going on at time of crash
e List of dirty pages and running transactions

— Redo pass (repeating history principle)
* Redo all operations, even for transactions that will not commit
* Get back state at the moment of the crash

— Undo pass
* Remove effects of all uncommitted transactions

* Log changes during undo in case of another crash during undo



ARIES Method Illustration
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Figure 3: The Three Passes of ARIES Restart

[Figure 3 from Franklin97]




ARIES Method Elements

e Each page contains a pageLLSN
— Log Sequence Number of log record for the latest update to that page

— Will serve to determine if an update needs to be redone

e Physiological logging
— page-oriented REDO
» Possible because will always redo all operations in order
— logical UNDO

* Needed because will only undo some operations



ARIES Method Data Structures

e Transaction table

— Lists all running transactions (active transactions)

— With lastLSN, most recent update by transaction
e Dirty page table

— Lists all dirty pages

— With recoveryLLSN, LSN that caused page to be dirty
e Write ahead log contains log records

— LSN
— prevLSN: previous LSN for same transaction



Checkpoints

e Write into the log
— Contents of transactions table

— Contents of dirty page table

 Enables REDO phase to restart from earliest
recoveryLSN 1n dirty page table
— Shortens REDO phase



Analysis Phase

e Goal

— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
» Conservative estimate of dirty pages

— Identify active transactions when crashed

e Approach
— Rebuild transactions table and dirty pages table

— Reprocess the log from the beginning (or checkpoint)
e Only update the two data structures

— Find oldest recoveryLSN (firstLSN) in dirty pages tables
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Redo Phase

e (Goal: redo all updates since firstLSN

e For each log record

— If affected page is not in the Dirty Page Table then do not update

— If affected page is in the Dirty Page Table but recoveryLSN > LSN
of record, then no update

— FElse if pageLLSN > LSN, then no update
* Note: only condition that requires reading page from disk

— Otherwise perform update
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Undo Phase

e @Goal: undo effects of aborted transactions

e Jdentifies all loser transactions in trans. table

e Scan log backwards

Undo all operations of loser transactions
Undo each operation unconditionally
All ops. logged with compensation log records (CLR)

Never undo a CLR
e Look-up the UndoNextLSN and continue from there
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Handling Crashes during Undo
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Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]
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Implementation: Locking

Can serve to enforce serializability
Two types of locks: Shared and Exclusive

Also need two-phase locking (2PL)

— Rule: once transaction releases lock, cannot acquire any additional
locks!

— So two phases: growing then shrinking

Actually, need strict 2PL

— Release all locks when transaction commits or aborts
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Phantom Problem

A “phantom” 1s a tuple that 1s invisible during part of a
transaction execution but not all of it.

Example:
— TO: reads list of books in catalog
— TI: inserts a new book into the catalog

— T2: reads list of books in catalog
e New book will appear!

Can this occur?
Depends on locking details (eg, granularity of locks)
To avoid phantoms needs predicate locking
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Deadlocks

Two or more transactions are waiting for each other to
complete

Deadlock avoidance
— Acquire locks in pre-defined order
— Acquire all locks at once before starting

Deadlock detection

— Timeouts
— Wait-for graph (this 1s what commercial systems use)
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Degrees of Isolation

Isolation level “serializable” (1.e. ACID)
— Golden standard
— Requires strict 2PL and predicate locking
— But often too inefficient

— Imagine there are few update operations and many long read
operations

Weaker 1solation levels
— Sacrifice correctness for efficiency
— Often used in practice (often default)
— Sometimes are hard to understand
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Degrees of Isolation

 Four levels of isolation
— All levels use long-duration exclusive locks
— READ UNCOMMITTED: no read locks
— READ COMMITTED: short duration read locks
— REPEATABLE READ:

e Long duration read locks on individual items

— SERIALIZABLE:

e All locks long duration and lock predicates

e Trade-off: consistency vs concurrency
 Commercial systems give choice of level
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Lock Granularity

e Fine granularity locking (e.g., tuples)
— High concurrency

— High overhead in managing locks

e Coarse grain locking (e.g., tables)
— Many false conflicts

— Less overhead in managing locks

e Alternative techniques
— Hierarchical locking (and intentional locks)
— Lock escalation
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The Tree Protocol

 An alternative to 2PL, for tree structures

 E.g. B-trees (the indexes of choice in databases)

* Because
— Indexes are hot spots!

— 2PL would lead to great lock contention
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The Tree Protocol

Rules:
e The first lock may be any node of the tree

e Subsequently, a lock on a node A may only be acquired if the
transaction holds a lock on its parent B

e Nodes can be unlocked in any order (no 2PL necessary)
e “Crabbing”

— First lock parent then lock child

— Keep parent locked only if may need to update it

— Release lock on parent if child is not full

e The tree protocol is NOT 2PL, yet ensures conflict-serializability !
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Other Techniques

e DB2 and SQL Server use strict 2PL

e Multiversion concurrency control (Postgres)
— Snapshot isolation (also available in SQL Server 2005)
— Read operations use old version without locking

e Optimistic concurrency control

— Timestamp based
— Validation based (Oracle)

— Optimistic techniques abort transactions instead of blocking them when
a conflict occurs
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Summary

e Transactions are a useful abstraction
* They simplify application development

e DBMS must be careful to maintain ACID
properties in face of

— Concurrency
— Failures
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