
1

Supplemental Notes:

Practical Aspects of Transactions

THIS MATERIAL IS OPTIONAL



2

Buffer Manager Policies

• STEAL or NO-STEAL

– Can an update made by an uncommitted transaction 

overwrite the most recent committed value of a data 

item on disk?

• FORCE or NO-FORCE

– Should all updates of a transaction be forced to disk 

before the transaction commits?

• Easiest for recovery: NO-STEAL/FORCE

• Highest performance: STEAL/NO-FORCE



3

Solution: Use a Log
• Enables the use of STEAL and NO-FORCE

• Log: append-only file containing log records

• For every update, commit, or abort operation

– Write physical, logical, physiological log record

– Note: multiple transactions run concurrently, log records are interleaved

• After a system crash, use log to:

– Redo some transaction that did commit

– Undo other transactions that didn’t commit



4

Write-Ahead Log

• All log records pertaining to a page are written to disk 

before the page is overwritten on disk

• All log records for transaction are written to disk before

the transaction is considered committed

– Why is this faster than FORCE policy?

• Committed transaction: transactions whose commit log 

record has been written to disk



5

ARIES Method

• Write-Ahead Log

• Three pass algorithm

– Analysis pass

• Figure out what was going on at time of crash

• List of dirty pages and running transactions

– Redo pass (repeating history principle)

• Redo all operations, even for transactions that will not commit

• Get back state at the moment of the crash

– Undo pass

• Remove effects of all uncommitted transactions

• Log changes during undo in case of another crash during undo 



6

ARIES Method Illustration

[Figure 3 from Franklin97]



7

ARIES Method Elements
• Each page contains a pageLSN

– Log Sequence Number of log record for the latest update to that page

– Will serve to determine if an update needs to be redone

• Physiological logging

– page-oriented REDO

• Possible because will always redo all operations in order

– logical UNDO

• Needed because will only undo some operations



8

ARIES Method Data Structures

• Transaction table

– Lists all running transactions (active transactions)

– With lastLSN, most recent update by transaction

• Dirty page table

– Lists all dirty pages

– With recoveryLSN, LSN that caused page to be dirty

• Write ahead log contains log records

– LSN

– prevLSN: previous LSN for same transaction



9

Checkpoints

• Write into the log

– Contents of transactions table

– Contents of dirty page table

• Enables REDO phase to restart from earliest 

recoveryLSN in dirty page table

– Shortens REDO phase



10

Analysis Phase

• Goal

– Determine point in log where to start REDO

– Determine set of dirty pages when crashed

• Conservative estimate of dirty pages

– Identify active transactions when crashed 

• Approach

– Rebuild transactions table and dirty pages table

– Reprocess the log from the beginning (or checkpoint)
• Only update the two data structures

– Find oldest recoveryLSN (firstLSN) in dirty pages tables



11

Redo Phase

• Goal: redo all updates since firstLSN

• For each log record

– If affected page is not in the Dirty Page Table then do not update

– If affected page is in the Dirty Page Table but recoveryLSN > LSN 

of record, then no update

– Else if pageLSN > LSN, then no update

• Note: only condition that requires reading page from disk

– Otherwise perform update



12

Undo Phase

• Goal: undo effects of aborted transactions

• Identifies all loser transactions in trans. table

• Scan log backwards

– Undo all operations of loser transactions

– Undo each operation unconditionally

– All ops. logged with compensation log records (CLR)

– Never undo a CLR

• Look-up the UndoNextLSN and continue from there



13

Handling Crashes during Undo

[Figure 4 from Franklin97]



14

Implementation: Locking

• Can serve to enforce serializability

• Two types of locks: Shared and Exclusive

• Also need two-phase locking (2PL)

– Rule: once transaction releases lock, cannot acquire any additional 

locks!

– So two phases: growing then shrinking

• Actually, need strict 2PL

– Release all locks when transaction commits or aborts



15

Phantom Problem
• A “phantom” is a tuple that is invisible during part of a 

transaction execution but not all of it.

• Example:
– T0: reads list of books in catalog

– T1: inserts a new book into the catalog

– T2: reads list of books in catalog

• New book will appear!

• Can this occur?

• Depends on locking details (eg, granularity of locks)

• To avoid phantoms needs predicate locking



16

Deadlocks

• Two or more transactions are waiting for each other to 
complete

• Deadlock avoidance

– Acquire locks in pre-defined order

– Acquire all locks at once before starting

• Deadlock detection

– Timeouts

– Wait-for graph (this is what commercial systems use)



17

Degrees of Isolation

• Isolation level “serializable” (i.e. ACID)

– Golden standard

– Requires strict 2PL and predicate locking

– But often too inefficient

– Imagine there are few update operations and many long read 
operations

• Weaker isolation levels
– Sacrifice correctness for efficiency

– Often used in practice (often default)

– Sometimes are hard to understand



18

Degrees of Isolation

• Four levels of isolation

– All levels use long-duration exclusive locks

– READ UNCOMMITTED: no read locks

– READ COMMITTED: short duration read locks

– REPEATABLE READ: 

• Long duration read locks on individual items

– SERIALIZABLE: 

• All locks long duration and lock predicates

• Trade-off: consistency vs concurrency

• Commercial systems give choice of level



19

Lock Granularity

• Fine granularity locking (e.g., tuples)

– High concurrency

– High overhead in managing locks

• Coarse grain locking (e.g., tables)

– Many false conflicts

– Less overhead in managing locks

• Alternative techniques

– Hierarchical locking (and intentional locks)

– Lock escalation



20

The Tree Protocol

• An alternative to 2PL, for tree structures

• E.g. B-trees (the indexes of choice in databases)

• Because

– Indexes are hot spots!

– 2PL would lead to great lock contention



21

The Tree Protocol

Rules:

• The first lock may be any node of the tree

• Subsequently, a lock on a node A may only be acquired if the 
transaction holds a lock on its parent B

• Nodes can be unlocked in any order (no 2PL necessary)

• “Crabbing”

– First lock parent then lock child

– Keep parent locked only if may need to update it

– Release lock on parent if child is not full

• The tree protocol is NOT 2PL, yet ensures conflict-serializability !



22

Other Techniques
• DB2 and SQL Server use strict 2PL

• Multiversion concurrency control (Postgres)

– Snapshot isolation (also available in SQL Server 2005)

– Read operations use old version without locking

• Optimistic concurrency control

– Timestamp based

– Validation based (Oracle)

– Optimistic techniques abort transactions instead of blocking them when 

a conflict occurs



23

Summary

• Transactions are a useful abstraction

• They simplify application development

• DBMS must be careful to maintain ACID 
properties in face of

– Concurrency

– Failures


