Lecture 28:

Monday, December 9, 2002

Outline

From the homework: Mr. Frumble’s blues
* An exercise: counting the number of joins

Redo logging — 17.3

Redo/undo logging — 17.4

Course evaluation forms

Understanding Hash Function
Distribution

N =100 buckets
* Find the distribution of:
H(‘a00%), H(‘a01), ..., H(‘a99’)
* Ascii(‘a’)=97, ascii(‘0’) =48
* Hence all values will start with:
(97+48+48) mod 100 =93
think of 93 as the new origin, and ignore it

Understanding Hash Function
Distribution

* Hence the values of:
H(*a00’), H(*a01"), ..., H(*a99")
are:
0+0, 0+1,0+2,.... ,949

* Observation 1: only buckets 0, 1, ..., 18 contain data !
+ Observation 2:

— Buckets 0 and 18 contain 1 data item

— Buckets 1 and 17 contain 2 data items

— Bucket 9 contains 10 data items

« Then what happens with H(*a00000%),, H(*a99999") ?
.

Counting the Number of Join

Orders (Exercise)
Ro(AgAD MR (ALA) M. .. MR (ALALL)
» The number of left linear join trees is:
n!
» The number of left linear join trees without
cartesian products is:
2n (why ?)
» The number of bushy join trees is:
nl/(n+1)*C2 = (2n)/((n+1)*(n!))
» The number of bushy join trees without cartesian
product is:
201 /(n+1)*C2n (why ?) 5

Number of Subplans Inspected
by Dynamic Programming
Ry(Ap A X R{(ALA) M. .. XR(ALA,)
* The number of left linear subplans inspected is:

T 1 CFk = n2n!

» The number of left linear subplans without cartesian products inspected is:
X a(n-k+1)*2 = n(n+1) why ?

* The number of bushy join subplans inspected is:
Ty fCny¥ 2k = 3k why ?

* The number of bushy join subplans without cartesian product:
2y o(n-k+1)*(k-1) = n*n*(n-1)/2 — n(n-1)(2n-1)/6 = n(n-1)(n+1)/6

Redo Logging

Log records

* <START T> = transaction T has begun
¢ <COMMIT T> = T has committed

* <ABORT T>=T has aborted

* <T,X,v>= T has updated element X, and its
new value is v

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before X is written to disk

e Hence: OUTPUTS are done late

Recovery with Redo Log

After system’s crash, run recovery manager

« Step 1. Decide for each transaction T
whether it is completed or not

— <START T>...<COMMIT T>.... =yes
— <START T>....<ABORT T>....... =yes
—<START T>.....ceoviniiiiiininnnnns =no

 Step 2. Read log from the beginning, redo
all updates of committed transactions

Action T Mem A | MemB Disk A Disk B Log
<START T>
REAT(A,) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B.t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
9
Recovery with Redo Log
<START T1>
<T1,X1vl>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

Nonquiescent Checkpointing

» Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active transactions

¢ Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

¢ When all blocks have been written, write
<END CKPT>

Redo Recovery with :
. . Comparison Undo/Redo
Nonquiescent Checkpointing
START TI> + Undo logging:
. — OUTPUT must be done early
< > Step 2: red
'?"thepll: look for (VM fr:r[; th:eo — If <COMMIT T> is seen, T definitely has written all its
¢ last R data to disk (hence, don’t need to redo) — inefficient
<START CKPT T4, TS, T6> 1gnoring .
<END CKPT> transactions * Redo logging
committed — OUTPUT must be done late
p earlier — If <COMMIT T> is not seen, T definitely has not
(/;!KF?E;FSPUTS V__END e written any of its data to disk (hence there is not dirty
known to be on disk data on disk, no need to undo) — inflexible
<START CKPT 9, T10> * Would like more flexibility on when to OUTPUT:
undo/redo logging (next)
13 14
Undo/Redo Logging Undo/Redo-Logging Rule
Log records, only one change URI1: If T modifies X, then <T,X,u,v> must
* <T,X,u,v>= T has updated element X, its be written to disk before X is written to disk

old value was u, and its new value is v

Note: we are free to OUTPUT early or late
(i.e. before or after <COMMIT T>)

15 16
Action | T | MemA | MemB | DiskA | DiskB Log Recovery with Undo/Redo Log
<START T>
REAT(A) 8 8 8 8
— " " " . After system’s crash, run recovery manager
WRITEGAD) | 16 P s s TAS16 * Redo all committed transaction, top-down
READ(B,) 3 16 3 3 3 * Undo all uncommitted transactions, bottom-up
=% 16 16 8 8 8
WRITE(B.t) 16 16 16 8 8 <T,B.8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Recovery with Redo Log

<START T1>
<T1X1,v1>
<START T2>
<T2,X2,v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,Xd4,v4>
<T1,X5,v5>

