Lecture 25:

Monday, December 27, 2002

.

Administrative

- · Homework 5 is due on Monday, 12/9
- Project demos will be on Tuesday 12/10

- 10am - 12pm: 6teams - 2pm - 4pm: 6teams - 4pm - 6pm: 6teams

- · Please send me email for an appointment
 - First come first served...

2

Outline

• Cost-based optimization: 16.5, 16.6

• Completing the physical query plan: 16.7

• Cost estimation: 16.4 (will continue next time)

3

Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one
 - Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans

4

Cost-based Optimizations

Approaches:

- **Top-down**: the partial plan is a top fragment of the logical plan
- **Bottom up**: the partial plan is a bottom fragment of the logical plan

Search Strategies

• Branch-and-bound:

- Remember the cheapest complete plan P seen so far and its cost C
- Stop generating partial plans whose cost is > C
- If a cheaper complete plan is found, replace P, C

· Hill climbing:

- Remember only the cheapest partial plan seen so far

• Dynamic programming:

- Remember the all cheapest partial plans

Dynamic Programming

Unit of Optimization: select-project-join

• Push selections down, pull projections up

Join Trees

- R1 ⋈ R2 ⋈ ⋈ Rn
- Join tree:

- A plan = a join tree
- A partial plan = a subtree of a join tree

7

Types of Join Trees

• Left deep:

Types of Join Trees

· Bushy:

10

Types of Join Trees

• Right deep:

11

Problem

- Given: a query $R1 \bowtie R2 \bowtie ... \bowtie Rn$
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

Dynamic Programming

- Idea: for each subset of $\{R1, ..., Rn\}$, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for $\{R1\}$, $\{R2\}$, ..., $\{Rn\}$
 - Step 2: for $\{R1,R2\}$, $\{R1,R3\}$, ..., $\{Rn-1,Rn\}$
 - ..
 - Step n: for {R1, ..., Rn}
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a subquery

13

Dynamic Programming

- For each subquery Q ⊆ {R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

14

Dynamic Programming

- Step 1: For each {Ri} do:
 - Size($\{Ri\}$) = B(Ri)
 - $Plan(\{Ri\}) = Ri$
 - $\text{Cost}(\{\text{Ri}\}) = (\text{cost of scanning Ri})$

15

Dynamic Programming

- **Step i**: For each Q ⊆ {R1, ..., Rn} of cardinality i do:
 - Compute Size(Q) (later...)
 - For every pair of subqueries Q', Q''
 s.t. Q = Q' ∪ Q''
 compute cost(Plan(Q') ⋈ Plan(Q''))
 - $-\operatorname{Cost}(Q)$ = the smallest such cost
 - Plan(Q) = the corresponding plan

16

Dynamic Programming

• Return Plan({R1, ..., Rn})

17

Dynamic Programming

To illustrate, we will make the following simplifications:

- Cost(P1 ⋈ P2) = Cost(P1) + Cost(P2) + size(intermediate result(s))
- · Intermediate results:
 - If P1 = a join, then the size of the intermediate result is size(P1), otherwise the size is 0
 - Similarly for P2
- Cost of a scan = 0

Dynamic Programming

- Example:
- $Cost(R5 \bowtie R7) = 0$ (no intermediate results)
- Cost((R2 ⋈ R1) ⋈ R7)
 - $= Cost(R2 \bowtie R1) + Cost(R7) + size(R2 \bowtie R1)$ = size(R2 \bowtie R1)

21

Dynamic Programming

· Relations: R, S, T, U

• Number of tuples: 2000, 5000, 3000, 1000 • Size estimation: $T(A \bowtie B) = 0.01*T(A)*T(B)$

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0	RU
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5M	30k	(TU)S
RSTU	30M	60k+50k=110k	(RT)(SU)

Dynamic Programming

- Summary: computes optimal plans for subqueries:

 - Step 1: {R1}, {R2}, ..., {Rn} Step 2: {R1, R2}, {R1, R3}, ..., {Rn-1, Rn}
 - Step n: {R1, ..., Rn}
- · We used naïve size/cost estimations
- In practice:
 - more realistic size/cost estimations (next time)
 - heuristics for Reducing the Search Space
 Restrict to left linear trees

 - · Restrict to trees "without cartesian product"
 - need more than just one plan for each subquery:
 - · "interesting orders"

23

Completing the Physical Query Plan

- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have ?
 - Are the input operand(s) sorted?
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Materialize Intermediate Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan?
 - Cost =
- How much main memory do we need?
 - -M=

26

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan?
 - Cost =
- · How much main memory do we need?
 - M =

28

Completing the Physical Query Plan

- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have ?
 - Are the input operand(s) sorted?
- Decide for each intermediate result:
 - To materialize
 - To pipeline

29

Example 16.36

· Logical plan is:

• Main memory M = 101 buffers

Example 16.36

Naïve evaluation:

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example 16.36

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on y into 50 buckets (50 buffers) here we *pipeline*
- Cost so far: 3B(R) + 3B(S)

Example 16.36

Continuing:

- How large are the 50 buckets on y? Answer: k/50.
- If $k \le 50$ then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Example 16.36

Continuing:

- If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk Each bucket has size $k/50 \le 100$
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

34

Example 16.36

- If k > 5000 then materialize instead of pipeline
- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example 16.36

Summary:

- If $k \le 50$,
- cost = 55,000
- If $50 < k \le 5000$,

• If k > 5000,

cost = 75,000 + 2kcost = 75,000 + 4k

Estimating Sizes

- · Need size in order to estimate cost
- · Example:
 - Cost of partitioned hash-join E1 \bowtie E2 is 3B(E1) + 3B(E2)
 - -B(E1) = T(E1)/block size
 - -B(E2) = T(E2)/block size
 - So, we need to estimate T(E1), T(E2)

37

Estimating Sizes

Estimating the size of a projection

- Easy: $T(\Pi_L(R)) = T(R)$
- This is because a projection doesn't eliminate duplicates

38

Estimating Sizes

Estimating the size of a selection

- $S = \sigma_{A=c}(R)$
 - T(S) san be anything from 0 to T(R) V(R,A) + 1
 - Mean value: T(S) = T(R)/V(R,A)
- $S = \sigma_{A < c}(R)$
 - T(S) can be anything from 0 to T(R)
 - Heuristics: T(S) = T(R)/3

39

Estimating Sizes

Estimating the size of a natural join, $R \bowtie_A S$

- When the set of A values are disjoint, then $T(R \bowtie_S S) = 0$
- When A is a key in S and a foreign key in R, then $T(R \bowtie_{A} S) = T(R)$
- When A has a unique value, the same in R and S, then T(R ⋈_AS) = T(R) T(S)

40

Estimating Sizes

Assumptions:

- <u>Containment of values</u>: if V(R,A) <= V(S,A), then the set of A values of R is included in the set of A values of S
 - Note: this indeed holds when A is a foreign key in R, and a key in S
- <u>Preservation of values</u>: for any other attribute B, $V(R \bowtie_a S, B) = V(R, B)$ (or V(S, B))

41

Estimating Sizes

Assume $V(R,A) \le V(S,A)$

- Then each tuple t in R joins \emph{some} tuple(s) in S
 - How many?
 - On average S/V(S,A)
 - t will contribute S/V(S,A) tuples in $R \bowtie_{_{A}} S$
- Hence $T(R \bowtie_A S) = T(R) T(S) / V(S,A)$

In general: $T(R \bowtie_{A} S) = T(R) T(S) / max(V(R,A),V(S,A))$

Estimating Sizes

Example:

• T(R) = 10000, T(S) = 20000

• V(R,A) = 100, V(S,A) = 200

• How large is $R \bowtie_A S$?

Answer: $T(R \bowtie_A S) = 10000 \ 20000/200 = 1M$

Estimating Sizes

Joins on more than one attribute:

• $T(R\bowtie_{A,B} S) =$

T(R) T(S)/max(V(R,A),V(S,A))max(V(R,B),V(S,B))

Histograms

- · Statistics on data maintained by the **RDBMS**
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, salary, phone)

· Maintain a histogram on salary:

Salary:	020k	20k40k	40k60k	60k80k	80k100k	> 100k
Tuples	200	800	5000	12000	6500	500

• T(Employee) = 25000, but now we know the distribution

Histograms

Ranks(rankName, salary)

• Estimate the size of Employee \bowtie_{Salary} Ranks

Employee	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	200	800	5000	12000	6500	500

Ranks	020k	20k40k	40k60k	60k80k	80k100k	> 100k
	8	20	40	80	100	2

47

Histograms

- Assume:
 - -V(Employee, Salary) = 200
 - -V(Ranks, Salary) = 250
- Then T(Employee \bowtie_{salary} Ranks) = = $\Sigma_{i=1.6}$ T_i T_i ' / 250 = (200x8 + 800x20 + 5000x40 + 12000x80 + 6500x100 + 500x2)/250
 - =