Lecture 25:

Monday, December 27, 2002

Administrative
» Homework 5 is due on Monday, 12/9

* Project demos will be on Tuesday 12/10
— 10am — 12pm: 6teams
— 2pm — 4pm: 6teams
— 4pm — 6pm: 6teams

* Please send me email for an appointment
— First come first served...

Outline

» Cost-based optimization: 16.5, 16.6
» Completing the physical query plan: 16.7

» Cost estimation: 16.4 (will continue next
time)

Cost-based Optimizations

* Main idea: apply algebraic laws, until
estimated cost is minimal

* Practically: start from partial plans,
introduce operators one by one
— Will see in a few slides

* Problem: there are too many ways to apply
the laws, hence too many (partial) plans

Cost-based Optimizations

Approaches:

* Top-down: the partial plan is a top
fragment of the logical plan

* Bottom up: the partial plan is a bottom
fragment of the logical plan

Search Strategies

¢ Branch-and-bound:

— Remember the cheapest complete plan P seen so far and
its cost C

— Stop generating partial plans whose cost is > C

— If a cheaper complete plan is found, replace P, C
 Hill climbing:

— Remember only the cheapest partial plan seen so far
* Dynamic programming:

— Remember the all cheapest partial plans

Dynamic Programming

Unit of Optimization: select-project-join
* Push selections down, pull projections up

Join Trees

* RIMR2NX....XRn
« Join tree:

R?a/ \Rl RZ/ \R4

* A plan=ajoin tree
A partial plan = a subtree of a join tree

Types of Join Trees

* Left deep:

Types of Join Trees
* Bushy:
/N\
> >
<N d N
/N
RI RS

Types of Join Trees

» Right deep:
D>

ST
R3 /e
R1 / \N

RS /N

R2 R4

Problem

* Given: aquery RI X R2 X ... XRn

» Assume we have a function cost() that gives
us the cost of every join tree

* Find the best join tree for the query

Dynamic Programming

* Idea: for each subset of {R1, ..., Rn}, compute the
best plan for that subset

* In increasing order of set cardinality:
— Step 1: for {R1}, {R2}, ..., {Rn}
— Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— Step n: for {R1, ..., Rn}
* It is a bottom-up strategy
* A subset of {R1, ..., Rn} is also called a subquery

13

Dynamic Programming

* For each subquery Q & {R1, ..., Rn}
compute the following:
— Size(Q)
— A best plan for Q: Plan(Q)
— The cost of that plan: Cost(Q)

Dynamic Programming

» Step 1: For each {Ri} do:
— Size({Ri}) = B(Ri)
— Plan({Ri}) =Ri
— Cost({Ri}) = (cost of scanning Ri)

Dynamic Programming

» Step i: Foreach Q & {R1, ..., Rn} of

cardinality i do:

— Compute Size(Q) (later...)

— For every pair of subqueries Q’, Q”’
st.Q=Q uQ”
compute cost(Plan(Q’) X Plan(Q’’))

— Cost(Q) = the smallest such cost

— Plan(Q) = the corresponding plan

Dynamic Programming

* Return Plan({R1, ..., Rn})

Dynamic Programming

To illustrate, we will make the following
simplifications:
* Cost(P1 X P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))
* Intermediate results:

— If P1 = a join, then the size of the intermediate result is
size(P1), otherwise the size is 0
— Similarly for P2

* Costofascan=10

Dynamic Programming

» Example:
* Cost(RSXR7) =0 (no intermediate results)
* Cost(R2X R1) X R7)
= Cost(R2 M R1) + Cost(R7) + size(R2 M R1)
=size(R2 X R1)

Dynamic Programming

e Relations: R, S, T, U
» Number of tuples: 2000, 5000, 3000, 1000
* Size estimation: T(A X B) = 0.01*T(A)*T(B)

20

Subquery Size Cost Plan

RS

RT

RSU

RTU

RSTU 2

Subquery Size Cost Plan
RS 100k 0 RS
RT 60k 0 RT
RU 20k 0 RU
ST 150k 0 ST
N 50k 0 SU
TU 30k 0 U

RST 3M 60k (RS
RSU M 20k (RU)S
RTU 0.6M 20k RU)T
STU 1.5M 30k (TU)S
RSTU 30M 60k+50k=110k (RT)(SU)

22

Dynamic Programming

* Summary: computes optimal plans for subqueries:
— Step I: {R1}, {R2}, ..., {Rn}
— Step 2: {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}

— Step n: {R1, ..., Rn}
* We used naive size/cost estimations

 In practice:
— more realistic size/cost estimations (next time)
— heuristics for Reducing the Search Space
 Restrict to left linear trees
* Restrict to trees “without cartesian product”
— need more than just one plan for each subquery:
* “interesting orders”

Completing the
Physical Query Plan

» Choose algorithm to implement each
operator
— Need to account for more than cost:
* How much memory do we have ?
« Are the input operand(s) sorted ?
* Decide for each intermediate result:
— To materialize
— To pipeline

24

Materialize Intermediate Results
Between Operators

HashTable € S
repeat read(R, x)

y € join(HashTable, x)
/ \\ write(V1, y)
HashTable € T

repeat read(V1,y)

z € join(HashTable, y)
V l / \\ write(V2, z)

HashTable < U
repeat read(V2, z)

u € join(HashTable, z)
/ X \ write(Answer, u) ‘

Materialize Intermediate Results
Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

» What is the total cost of the plan ?
— Cost =

* How much main memory do we need ?
M=

26

Pipeline Between Operators

/1

HashTablel € S
HashTable2 € T
HashTable3 < U

repeat read(R, x)

y € join(HashTablel, x)
z € join(HashTable2, y)
u € join(HashTable3, z)

write(Answer, u)

How much main memory do we need ? M=’

Pipeline Between Operators
Question in class
Given B(R), B(S), B(T), B(U)

» What is the total cost of the plan ?
— Cost =

* How much main memory do we need ?
M=

28

Completing the
Physical Query Plan

» Choose algorithm to implement each
operator
— Need to account for more than cost:
* How much memory do we have ?
« Are the input operand(s) sorted ?
* Decide for each intermediate result:
— To materialize
— To pipeline

Example 16.36

 Logical plan is:
B

N

U(y,2)
10,000 blocks

kblocks <

R(w.x) S(xy)
5,000 blocks 10,000 blocks

* Main memory M = 101 buffers

30

Example 16.36

>

N

U(y.2)
10,000 blocks
R(w.x) S(xy)
5,000 blocks 10,000 blocks

kblocks <]

Naive evaluation:
* 2 partitioned hash-joins
* Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Example 16.36

>

N

U(y.2)
10,000 blocks

kblocks <]

R(w.x) S(xy)
5,000 blocks 10,000 blocks

Smarter:
» Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk

Step 2: hash S on x into 100 buckets; to disk
Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on
y into 50 buckets (50 buffers) -- here we pipeline

Cost so far: 3B(R) + 3B(S) 3

Example 16.36

M\
U(y,2)
\ 10,000 blocks
R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <]

Continuing:

* How large are the 50 buckets ony ? Answer: k/50.

» Ifk <= 50 then keep all 50 buckets in Step 3 in memory, then:

» Step 4: read U from disk, hash on y and join with memory

* Total cost: 3B(R) + 3B(S) + B(U) = 55,000 3

Example 16.36

M\
U(y,2)
\ 10,000 blocks
R(w.x) S(x.y)
5,000 blocks 10,000 blocks

kblocks <]

Continuing:

.

If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk
— Each bucket has size k/50 <= 100
Step 4: partition U into 50 buckets
Step 5: read each partition and join in memory
Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k 34

Example 16.36

M\
k blocks
ocks U(y2)
10,000 blocks
R(w,x) S(x.y)
.. 5,000 blocks 10,000 blocks
Continuing:

» Ifk > 5000 then materialize instead of pipeline
* 2 partitioned hash-joins
* Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

35

Example 16.36

Summary:

o Ifk <=50, cost = 55,000

o If 50 <k <=5000, cost= 75,000+ 2k
« If k> 5000, cost = 75,000 + 4k

36

Estimating Sizes

¢ Need size in order to estimate cost
* Example:

— Cost of partitioned hash-join E1 > E2 is
3B(E1) + 3B(E2)

—B(El) = T(E1)/ block size
— B(E2) = T(E2)/ block size
— So, we need to estimate T(E1), T(E2)

Estimating Sizes

Estimating the size of a projection
* Easy: T(IT (R)) = T(R)

* This is because a projection doesn’t
eliminate duplicates

38

Estimating Sizes

Estimating the size of a selection
*S= GA=C(R)
— T(S) san be anything from 0 to T(R) — V(R,A) + 1
— Mean value: T(S) = T(R)/V(R,A)
* S= GA<C(R)
— T(S) can be anything from 0 to T(R)
— Heuristics: T(S) = T(R)/3

Estimating Sizes

Estimating the size of a natural join, R <, S

* When the set of A values are disjoint, then
TR=<S)=0

* When A is a key in S and a foreign key in
R, then T(R><,S) = T(R)

* When A has a unique value, the same in R
and S, then T(R <, S) = T(R) T(S)

40

Estimating Sizes

Assumptions:

» Containment of values: if V(R,A) <= V(S,A), then
the set of A values of R is included in the set of A
values of S

— Note: this indeed holds when A is a foreign key in R,
and a keyin S

* Preservation of values: for any other attribute B,
V(Rp<S, B)=V(R, B) (or V(S, B))

41

Estimating Sizes

Assume V(R,A) <= V(S,A)

* Then each tuple t in R joins some tuple(s) in S
— How many ?
— On average S/V(S,A)
— t will contribute S/V(S,A) tuples in R MAS

+ Hence T(R b4, S)=T(R) T(S)/ V(S.A)

In general: T(R MAS) =T(R) T(S) / max(V(R,A),V(S,A))

42

Estimating Sizes
Example:
* T(R) =10000, T(S)=20000
* V(R,A) =100, V(S,A)=200
* How largeisR =, S ?

Answer: T(R va, S) = 10000 20000/200 = 1M

43

Estimating Sizes

Joins on more than one attribute:
* TR o S)=

T(R) T(S)/max(V(R,A),V(S,A))max(V(R,B),V(S,B))

44

Histograms

« Statistics on data maintained by the
RDBMS

* Makes size estimation much more accurate
(hence, cost estimations are more accurate)

45

Histograms

Employee(ssn, name, salary, phone)
* Maintain a histogram on salary:

Salary: 0..20k 20k..40k |40k..60k | 60k..80k | 80k..100k | > 100k

Tuples 200 800 5000 12000 6500 500

* T(Employee) = 25000, but now we know the
distribution

46

Histograms

Ranks(rankName, salary)
* Estimate the size of Employee Pty Ranks

Employee | 0..20k 20k.40k | 40k..60k | 60k..80k | 80k..100k | > 100k
200 800 5000 12000 6500 500

Ranks 0..20k 20k.40k | 40k..60k | 60k..80k | 80k..100k | > 100k

8 20 40 80 100 2

47

Histograms

e Assume:
— V(Employee, Salary) =200
— V(Ranks, Salary) =250
* Then T(Employee >,
=26 T, T /250
= (200x8 + 800x20 + 5000x40 +
12000x80 + 6500x100 + 500x2)/250

Ranks) =

48

