Lecture 23:

Monday, November 25, 2002

Outline

* Query execution: 15.1 —15.5
* Query optimization: algebraic laws 16.2

Indexed Based Algorithms

Recall that in a clustered index all tuples
with the same value of the key are clustered
on as few blocks as possible

‘ aaa‘ ‘aaaaa‘ ‘aa ‘

Note: book uses another term: “clustering
index”. Difference is minor...

Index Based Selection

* Selection on equality: c,_(R)
* Clustered index on a: cost B(R)/V(R,a)
* Unclustered index on a: cost T(R)/V(R,a)

Index Based Selection

B(R) =2000
Example: T(R) = 100,000 cost of 5,_ (R) =7

V(R, a) =20

Table scan:
— If R is clustered: B(R) = 2,000 I/Os
— If R is unclustered: T(R) = 100,000 I/Os
Index based selection:
— Ifindex is clustered: B(R)/V(R,a) = 100
— Ifindex is unclustered: T(R)/V(R,a) = 5,000
Notice: when V(R,a) is small, then unclustered
index is useless

Index Based Join

* RPS

» Assume S has an index on the join attribute

« Iterate over R, for each tuple fetch
corresponding tuple(s) from S

* Assume R is clustered. Cost:
— If index is clustered: B(R) + T(R)B(S)/V(S,a)
— If index is unclustered: B(R) + T(R)T(S)/V(S,a)

6

Index Based Join

» Assume both R and S have a sorted index
(B+ tree) on the join attribute

* Then perform a merge join
— called zig-zag join

* Cost: B(R) + B(S)

Example

Product(pname, maker), Company(cname, city)

Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Select Product.pname

From Product, Company

Where Product.maker=Company.cname
and Company.city = “Seattle”

Logical Plan:

aker=cname
/ (‘ycity:“Scattlc”
Product Company
9
e Plan 1:
— Index-based selection: ~ T(Company) / V(Company, city)
— Index-based join: x T(Product) / V(Product, maker)
e Plan2:
— Table scan and selection on Company: B(Company)
— Plan 2a: scan and sort: 3B(Product)
— Plan 2b: index-scan: T(Product)

— Merge-join: their sum

Plan 1: T(Company)/V(Company,city) x T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product) |

Physical plan 1: Physical plans 2a and 2b:
Index-based
Index-based join Merge-join
selection
/ maker=cname > aker=cname
O iy »
Gcity—“Sc% / ‘ city="Seattle
Company Product Product Company
Scan and sort (2a)
index scan (2b)
10
Example

T(Company) = 5,000 B(Company)=500 M =100
T(Product) = 100,000 B(Product) = 1,000

) : v(C y,city) = 2,000
* Case 1: V(Company, city) ~ T(Company)

V(Product, maker) ~ T(Product)
* Case 2: V(Company, city) << T(Company)
V(Product, maker) ~ T(Product) V(Product,maker) = 20,000

+ Case 3: V(Company, city) << T(Company)

V(Product, maker) << T(Product)

12

Which Plan is Best ?

Plan 1: T(Company)/V(Company,city) x T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

Case 3: 13

Optimization

Chapter 16
At the hart of the database engine

 Step 1: convert the SQL query to some
logical plan

Step 2: find a better logical plan, find an
associated physical plan

Converting from SQL to Logical
Plans

Select al, ..., an
From R1, ..., Rk M1, (0 ((RIp<a R25q ... RK))
Where C

Select al, ..., an
FromR1, ..., Rk
Where C

Group by b1, ..., bl

Ty anY b1, . bm, ages (0 c(R1p< R2ba ... >RK)))

Converting Nested Queries

Select distinct product.name
From product
Where product.maker in (Select company.name
From company
where company.city="Seattle”)

Select distinct product.name

From product, company

Where product.maker = company.name AND
company.city="Seattle”

Converting Nested Queries

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price >= ALL (Select y.price
From producty
Where x.maker = y.maker
AND y.color="blue”)

How do we convert this one to logical plan ?

Converting Nested Queries

Let’s compute the complement first:

Select distinct x.name, x.maker
From product x
Where x.color= “blue”
AND x.price < SOME (Select y.price
From product y
Where x.maker = y.maker
AND y.color="blue”)

Converting Nested Queries

This one becomes a SFW query:

Converting Nested Queries

Select distinct x.name, x.maker

From product x, product y

Where x.color= “blue” AND x.maker = y.maker
AND y.color="blue” AND x.price < y.price

This returns exactly the products we DON’T
want, sO...

(Select x.name, x.maker
From product x
Where x.color = “blue”)

EXCEPT

(Select x.name, x.maker

From product x, product y

Where x.color= “blue” AND x.maker = y.maker
AND y.color="blue” AND x.price < y.price)

20

Optimization:
the Logical Query Plan

» Now we have one logical plan
* Algebraic laws:
— foundation for every optimization
» Two approaches to optimizations:
— Heuristics: apply laws that seem to result in cheaper
plans
— Cost based: estimate size and cost of intermediate
results, search systematically for best plan
» All modern database optimizers use a cost-based
optimizer
— Why? 21

The three components of an
optimzer

We need three things in an optimizer:
 Algebraic laws

* An optimization algorithm
* A cost estimator

22

Algebraic Laws

* Commutative and Associative Laws
-RUS=SUR, RUSUT)=RUS)UT
~RNS=SNR, RNESNT)=RNS)NT
~RXS=SKXR, RK(SMXT)=RNS)XT

* Distributive Laws
~RXGSUT) = RKS)URKT)

Algebraic Laws

» Laws involving selection:
— 6canncR)=0 (0 =(R)) =06 (R) N o (R)
~ G corcR) =0 (R)Uc (R)
- o0cRXS)=cR)MS
* When C involves only attributes of R
~ 6c(R-8)=6R)-S
- 0cRUS)=0R)UG(S)
-ocRNS)=c.R)NS

24

Algebraic Laws

« Example: R(A, B, C, D), S(E, F, G)

Algebraic Laws

» Laws involving projections
— TR X S) = H(ITp(R) X [(S))

* Where N, P, Q are appropriate subsets of attributes
of M

- Iy(IIy(R)) = HM,N(R)
» Example R(A,B,C,D), S(E, F, G)
= T, (R X S) =TI, (IT,(R) X TI,(S))

26

= 03 RNXp S)= ?
— 6 A5 aNDG-9 R MXpg S) = ?
Algebraic Laws

Laws involving grouping and aggregation:

* S(YA‘ agg(B)(R)) = YA, agg(B)(R)

* Va agg(,?‘)_(8(R)) = YA, age®(R) if agg is “duplicate
insensitive”

— Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

* YA, agg(D)(R(A7B) [x]B:C S(C7D)) =
YA, agg(D)(R(AaB) MB=C (YB, agg(D)S(C7D)))
— Why is this true ?
— Why would we do it ?

